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not "sufficiently long" to ensure that the estimation error is small, estimator 
performance is dominated by large estimation errors due to anomalous estimates, 
and actual performance can be much worse than predicted by the CRLB. This report 
presents a detailed analysis of time delay estimator performance. 

By way of background, the generalized cross correlation (GCC) approach for 
TDE is discussed and it is shown that many of the commonly used TDE methods, 
including the ML estimator, are related through the GCC method. In recent work, 
a correlator performance estimate (CPE) and a modified Ziv-Zakai lower bound 
(ZZLB) have been developed, which predict performance more accurately than the 
CRLB for large estimation error conditions. Derivations of the CRLB, the CPE 
and the ZZLB are given, and the behavior of these performance estimates is 
investigated for the case of flat, low-pass signal and noise power spectra. 
The CPE and the ZZLB are seen to be characterized by a threshold signal-to-noise 
ratio (SNR). Above this threshold SNR, the CPE and the ZZLB coincide with the 
CRLB, while below the threshold, the CPE and the ZZLB deviate from the CRLB and 
predict much poorer performance than the CRLB. Further, the threshold SNR is 
shown to be approximately inversely proportional to the square root of the 
coherent processing time. 

This behavior has significant implications for TDE signal processing tech- 
niques.  In particular, significant performance gains can be realized by imple- 
menting a coherent processor as opposed to an incoherent processing algorithm. 
Simulation results are presented to corroborate these performance predictions. 
For the case of a time-varying time delay, these observations point to the 
necessity of pre-processing the received signals to compensate for the relative 
time compression. This compensation is required in order to implement a coherent 
processor and results in a more complex structure for the time delay estimator. 
A relatively simple compensation technique is described, and preliminary simula- 
tion results are presented to demonstrate the effectiveness of this technique. 
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CHAPTER 1 

INTRODUCTION 

Time delay estimation (TDE) is an area of active research with 

applications in a wide variety of fields [1]. An important concern in any 

estimation problem is that of predicting the performance of the estimation 

methods employed.  It is often possible to set a measure of performance by 

establishing bounds on performance. While performance bounds set an 

absolute standard or limit for performance, the usefulness of a given bound 

for predicting performance depends upon the tightness of the bound, i.e., 

how close the bound is to the greatest lower (or least upper) bound. This 

research conducts a comparative study of performance bounds for the time 

delay estimation problem. For the TDE problem, lower bounds on the 

variance of the time delay estimate can be computed. An important 

objective of this study is to gain a better understanding of the behavior 

of these bounds as functions of the signal-to-noise ratio, bandwidth, and 

observation time. In addition, the TDE performance bounds are compared to 

simulation results to determine their relative merit for predicting time 

delay estimator performance. The results of this study are found to have 

significant implications for TDE signal processing techniques. 

1.1 TDE Background 

In the basic time delay estimation problem, a signal and a delayed 

version of the signal, both of which may be corrupted by noise, are 

received at a sensor or sensors and the object is to estimate the delay 



value. This problem has found applications in seismic prospecting [2], 

bio-medical engineering [3], nuclear reactor engineering [4], and many 

other areas. Depending on the application, the signal may be electrical, 

acoustical, or even neutron flux fluctuations [4], and the receiver may be 

a single sensor, multiple sensors, or sensor arrays. The application which 

motivates this research is that of passive sonar source localization. The 

problem will be modelled as depicted in Figure 1.1.; an acoustic signal 

emanates from a point source, propagates through the ocean medium, and is 

received at two spatially separated sensors. Assuming a constant 

propagation speed of sound in the ocean, the time delay in the time of 

arrival of the signal at the two sensors is given by the difference in the 

path lengths between the source and the two sensors, divided by the speed 

of sound in the ocean. 

For a given value of the time delay, it can be shown that the source 

must be located along a hyperbola as shown in Figure 1.2. Taking the 

baseline between the two sensors as the x-axis, with the origin at the 

mid-point between the sensors, the equation of the hyperbola is given by 

2     2 iS + —f-y*  1/4 , (1-1) 
AIT AR-1/ 

where L is the distance between sensors and AR is the difference in the 

path lengths between the source and the two sensors. Note that AR = D c, 

where D is the time delay of the signal at sensor 1 relative to sensor 2 

and c is the speed of sound in the ocean. 



R.j = R2 + AR 

SENSOR 1 

ACOUSTtC 
SOURCE 

-BASELINE 
L/2 SENSOR 2 

Figure 1.1 Physical Model of the TDE Problem 
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Figure 1.2 Bearing Angle Interpretation 



The bearing of the source, relative to the midpoint of the baseline, 

is given to a good approximation by the bearing angle, ©, defined by the 

intersection of the hyperbolic asymptote with the baseline. It can be 

shown that 

cos e ■ AR 1 + L
2 - AR2 

1/2 

(1-2) 

where R is the distance to the source along the hyperbolic asymptote. 

For a distant point source (R >> L), e is a \iery  good approximation to 

the true bearing and (1-2) becomes 

-1 AR    -1 D c 
e = cos  -j— = cos  -j— (1-3) 

Thus, if L and c are known and the time delay between the two sensors can 

be estimated, an estimate of the source bearing, relative to the position 

of the sensors, can be obtained from equation (1-3). For D > o, the source 

is closer to sensor 2 than to sensor 1 as in Figure 1.2. For D < o, the 

situation is reversed and the source is located along the corresponding 

hyperbola reflected through the y-axis. The maximum possible delay occurs 

when the source is in the endfire position (colinear with the sensors) and 

D   = L/c. When the source is in the broadside position (along the 

y-axis in Figure 1.2) the time delay is zero. The time delay is known 

"a priori" to be limited by -L/c < D < L/c, or equivalently, -L < AR < L. 

Many techniques have been proposed for TDE including both frequency 

domain and time domain processors. Perhaps the simplest method for 



estimating the time delay is to compute the cross-correlation function 

between the signal and its delayed version. The argument for which the 

cross-correlation function attains its maximum value corresponds to the 

time delay estimate [5, pp. 64-65]. Knapp and Carter have shown that many 

of the commonly used TDE techniques are related through the Generalized 

Cross Correlation (GCC) approach [6]. The class of GCC processors are 

generally considered to be frequency domain processors and include: the 

Roth processor [7], the Eckart filter [8], the smoothed coherence transform 

(SCOT) [9], the phase transform (PHAT) [10], the Wiener processor [11], and 

the Hannan-Thomson or maximum likelihood processor [12, 6], In this work, 

consideration is limited to the GCC approach for TDE which is discussed in 

some detail in Chapter 2. However, it should be noted that considerable 

work has been done on time domain processors for TDE. Many of these time 

domain techniques are based on Widrow's least mean square (LMS) algorithm 

[13]. Excellent discussions of adaptive time delay estimation are given in 

works by Youn [14], Youn and Ahmed [15], Chan, Riley, and Plant [16, 17], 

Etter and Stearns [18], and Feintuch, Bershad, and Reed [19]. 

1.2 TDE Performance 

— ■ • 

Several of the GCC processors, such as the maximum likelihood and 

Eckart estimators, are designed to be optimum with respect to some 

performance criteria. Others, such as the SCOT and PHAT, are intuitive or 

"ad hoc" techniques, developed to perform well for certain signal and noise 

spectra. Depending upon the performance criteria and the signal and noise 

spectra, a strong argument can be made for the optimality of each of the 

TDE processors. There is an obvious need for a performance standard 



against which the various TDE methods can be evaluated. The Cramer-Rao 

lower bound (CRLB) is commonly used as a performance standard [20-22]. The 

CRLB yields a lower bound on the variance of any unbiased time delay 

estimate as a function of several parameters (e.g. the signal and noise 

power spectra and the observation time). Part of the appeal of the CRLB is 

that under certain assumptions, there is a theorem which states that the 

maximum likelihood (ML) estimate can be made arbitrarily close to the CRLB 

for sufficiently long observation times [23, pp. 62-72]. However, the 

theorem does not specify how long the observation time must be. Thus, 

while the CRLB sets a lower bound on the variance of the time delay 

estimate, actual performance can be much worse for a given signal-to-noise 

ratio (SNR) and observation time. This is substantiated by the simulation 

results in [24, 25]. 

Several studies have been conducted to find a bound tighter than the 

CRLB, which would predict performance more accurately. Chow and 

Schultheiss have investigated a simplified version of the Barankin bound 

[26]. Ianniello has developed a correlator performance estimate (CPE) and 

has shown via simulation that, for the cross-correlation technique of TDE, 

the CPE yields a more accurate estimate of performance than the CRLB [27]. 

Weiss and Weinstein have proposed a modified version of the Ziv-Zakai lower 

bound (ZZLB) [28-30]. A comparison of the CPE and the ZZLB is reported by 

Ianniello, Weinstein, and Weiss in [31]. Further comparisons of the CPE, 

the ZZLB and the CRLB are presented in this dissertation. In particular, 

the behavior of these performance estimates is considered as a function of 

the observation time and SNR, and the implications of this behavior are 

discussed. Portions of this work, comparing the CRLB and the CPE, appear 

in [32]. 



1.3 Organization and Content 

Before proceeding with the analysis of time delay estimator 

performance, the mathematical model for the TDE problem is introduced in 

Chapter 2. The GCC approach for TDE is discussed briefly and several 

specific estimators from the class of GCC processors are described. In 

Chapter 3, the shortcomings of the CRLB are pointed out, in order to 

motivate the need for better performance estimates such as the CPE and the 

ZZLB. Derivations of the CRLB, the CPE and the ZZLB are outlined and 

expressions for the variance of the delay estimate for specific signal and 

noise power spectra are  given. Futher comparisons of these performance 

estimates are presented in Chapter 4, including comparison with simulation 

results. The threshold effect exhibited by the CPE and the ZZLB is shown 

to have important implications for TDE processing methods. In particular, 

significant performance gains may be obtained from increasing the coherent 

processing time as opposed to increasing the incoherent processing time. 

To this point, a stationary TDE model (no relative motion between source 

and sensors) has been assumed. In Chapter 5, the case of a time-varying 

time delay is considered. The observations of Chapter 4 point to the 

necessity of pre-processing the received signals to compensate for the 

relative motion before applying the GCC approach for TDE. One such 

compensation technique is described and preliminary simulation results are 

presented. Chapter 6 summarizes the conclusions of this research and 

offers some suggestions for future work. 



CHAPTER 2 

THE GCC APPROACH FOR TIME DELAY ESTIMATION 

This chapter introduces the mathematical model and discusses the 

related assumptions for the time delay estimation problem considered in 

this work. Based on this model, the Generalized Cross Correlation (GCC) 

approach for estimating time delay is developed. Several specific 

techniques from the class of GCC estimators are formulated and the 

characteristics of these techniques are discussed briefly. 

2.1 Mathematical Model 

A commonly used model for a signal radiated from an acoustic source 

and received in the presence of additive noise at two spatially separated 

sensors is given by (2-1). Denoting the received signals as r,(t) and 

r2(t), let 

r2(t) = s(t) + rijtt) (2-la) 

r?(t) = as(t+D) + n2(t), 0 < t < T      (2-lb) 

where s(t) represents the source signal, n..(t) and n2(t) are the additive 

noises, a is a relative attenuation parameter, and D is the time delay 

parameter to be estimated. The observation time, T, is assumed to be much 

larger than D. Additionally, it is assumed that s(t), n,(t), and n?(t) 

are zero mean, stationary, Gaussian random processes and that they are 

mutually uncorrelated. Also note that the model of (2-1) makes several 



implicit assumptions. In particular, the effects of multiple sources and 

multi-path arrivals are ignored. Since only the direct acoustic path is 

considered, the problem is essentially planar, with the source and the two 

sensors defining the plane of interest, as in Figure 1.1. The attenuation 

parameter, a, allows modelling of a relative attenuation in the signal 

strength due to the difference in path lengths between the source and 

sensors. In general, a will be frequency dependent rather than constant as 

in (2-1). Also the time delay, D, is assumed to be constant over the 

observation interval which requires that the source remain stationary 

relative to the sensors during this time interval. The problem of relative 

motion between source and sensors is discussed in Chapter 5. Finally, the 

speed of sound in the ocean is assumed constant, although it actually 

varies with depth (temperature and pressure). 

The results of any analysis based on the simplified model of (2-1) 

must be applied cautiously to "real world" problems, such as the passive 

sonar problem which motivates this research. Nevertheless considerable 

insight into time delay estimator performance can be derived from analysis 

of this simple model. More detailed discussions of sonar signal processing 

considerations and effects of the ocean medium may be found in [33-35]. 

2.2 GCC Approach 

An effective method of estimating the time delay, D, is to compute the 

cross correlation function between the received signals, r,(t) and r2(t), 

10 



R p (T) = E[r,(t+T) r (t)] (2-2) 
rlr2       i     d 

where E['] is the expectation operator. Substituting (2-1) into (2-2) 

yields 

Rr r (T)
 
= a RSS(T-D)S (2_3) 

where R55(
T) is the auto-correlation function of the signal, s(t). To 

obtain (2-3), the assumption that s(t), n^t), and n2(t) are mutually 

uncorrelated has been used. The cross correlation function can also be 

computed from the cross power spectrum, G   (f), of the received signals, 
rlr2 

using the Fourier transform (FT) relationship 

Rr r (T)
 =/Gr r <f) ^^   df (2"4a> rlr2    -- rlr2 

where, for the model of (2-1), 

Gr r  (f) ' a Gss(f)  e"j2lTfD ' (2"4b) 

It can be seen from either (2-3) or (2-4) that R   (T) attains its maximum 
rlr2 

value when T=0. Thus, the argument, T, which maximizes the cross 

correlation function is an estimate of the time delay. 

In practice, the cross correlation function must be estimated from 

data acquired during a finite observation time, T. To improve the accuracy 

of the delay estimate, D, it is usually desirable to prefilter the noisy 

received signals, r-^t) and r2(t), prior to computing the cross 

correlation function. For example, if the source signal is known to be 

11 



bandlimited between fj and f2, while the spectra of the additive noises 

extend beyond these limits, it would be reasonable to prefilter the 

received signals, passing only the frequency band between f-, and f2. 

This concept of prefiltering motivates the GCC approach for time delay 

estimation as depicted in Figure 2.1 [6]. 

The received signals, r^t) and r2(t), are processed through 

filters having transfer functions, H-^f) and H2(f), respectively. The 

cross power spectrum between the filter outputs, Pi(t) and p?(t), is 

given by [36, p. 353] 

G
PlP2

(f) = Hl(f) H2(f) V2
(f)' (2"5) 

r 
where * denotes the complex conjugate. The GCC function, R   (T), is 

rlr2 

then obtained by taking the inverse Fourier transform (IFT) of G   (f)5 

£  r (T) = TW(f) Gr  (f) ej2irfT df,        (2-6) 

where W(f) = H1(f)*H2(f). Substituting (2-4b) in (2-6) yields 

00 

Rr r  (T) =fa W(f)  Gss(f) e_j2lTfD ej2ufT  df-     (2"7) 
1 2 ~« 

r 
To ensure that R„ „ (T) has a maximum at T=D, W(f) must be a real 

rlr2 

function, or equivalently, the prefilters, H^f) and H2(f), must have 

identical phase characteristics. 

While the realization of Figure 2.1 is useful conceptually, the approach 

suggested by (2-6) is often preferred. That is, the cross power spectrum, 
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M(t) 

r2(t) 

H-,(f) 
Pl(t) 

CROSS 
CORRELATOR 

P2(t) 
H2(f) 

RG (T) 
r-,r2 

Figure 2.1 GCC Approach for TDE 
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G- -. (f)» is multiplied by a real weighting functions W(f), then the IFT of 
rlr2 

the result is computed to obtain the GCC function. Additional insight into 

the GCC approach may be gained by writing (2-6) in a slightly different 

form, 

00 

Rr r (T)
 =/vf) eJ'*(f) eJ2fffT df>        (2-8a) 

where 

and 

l^(f) = W(f) Gr r <f) rlr2 
= a W(f) Gss(f),      (2-8b) 

ejW) - Gf  (f)/ 
rlr2 

6. - (f) rlr2 
= e-j2fffD .     (2-8c) 

The derivative of the phase, 4(f)t  with respect to the frequency is 

a measure of the time delay and the GCC method can be thought of as 

applying a weighting function, W,(f), to the phase of the cross power 

spectrum [37]. Note that (2-8) is equivalent to (2-6). 

A variety of weighting functions have been proposed to optimize 

performance with respect to certain criteria. As suggested previously, 

if a priori information about the signal and noise spectra exists, this 

information should be incorporated in the weighting function, W(f). 

Indeed many of the commonly used weightings are functions of the signal 

and noise power spectra. However, in most cases of practical interest, 

little or no a priori information is available. This necessitates the 

estimation of the cross power spectrum and the weighting function from 

the received signals. The pertinent spectra can be obtained using 

14 



Processor W(f) = H^f) H2(f)       H#(f) = |Gr r (f)|W(f) 

Standard Cross 
Correlation (SCC) 

1 Gr r <f > 

Roth 
G   (f) 
rlrl 

G   (f) 
rlr2 

G   (f) 
rlrl 

1 
Smoothed Coherence 
Transform (SCOT) V Gr _ (f) Gr  (f) 

rlrl    r2r2 

>/cr r (f) \ r:r2 

Wiener Processor (WP) Cr r (f) rlr2 
C   (f) 
rlr2 

Gr r <f > rlr2 

Phase Transform (PHAT)    iG   (f) 
rlr2 

Maximum Likelihood (ML) C   (f) 
rlr2 

LI - C   l+)J 
rlr2 

K : it) 
rlr2 

C   (f) 
rlr2 
T^T JJ) 

rlr2 

Table 2.1 Weighting Functions for GCC Processors 
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Standard spectral estimation techniques. Substitution of these estimates 

into (2-6) or (2-8a) enables an estimate of the GCC function, 

"• C 
R-  (Th to be computed. Inherent in the need to estimate the power 
rlr2 

spectra is a corresponding degradation in performance, the degree of which 

is dependent on the merit of the estimates. This point will be considered 

again in connection with the simulation results in Chapter 4. In the 

following discussion, specific techniques for time delay estimation are 

examined and it is shown how they are related through the GCC approach. 

The GCC weighting functions for these techniques are summarized in Table 

2.1. 

2.2.1 Standard Cross Correlation 

The basis for the GCC approach is the standard cross correlation (SCC) 

method. As noted in (2-4a), the SCC function and the cross power spectrum 

form a FT pair. The SCC method can be thought of as applying a uniform 

weighting to the cross power spectrum prior to computing the IFT. Setting 

W(f) = 1 in (2-6), or equivalently, W,(f) = 
rlr2 

(f) in (2-8a), 

immediately yields the defining relationship for the SCC function, equation 

(2-4a). 

2.2.2 The Roth Processor 

One of the first modifications to the SCC method was proposed by 

Roth [7]. The Roth processor applies the weighting function 
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W(f) = g    1  (fj (2-9a) 
rlrl 

to obtain 

RR°th (T) m I Wi— ej2»fx df#       (2_9b) 
rlr2    -»G   (f) rlrl 

If r.(t) is the input to a linear filter which provides the minimum mean 

square error estimate of r«(t) (i.e. a Wiener filter), then 

R °  (T) is the impulse response of this filter. Thus, the transfer 
rlr2 

function of this optimum filter is simply G   (f)/G   (f), 
rlr2   rlrl 

For the signal model under consideration, 

G
Yl

(f) = Gss(f>  + \n™   • <2"10> 

The Roth weighting function suppresses those frequency bands where the 

noise power, G   (f), is large and the estimate G   (f) is more likely 
Vl rlr2 

to be in error. Further the Roth weighting tends to suppress those regions 

where G (f) is large, which has a whitening effect on the signal. This 

reduces the ambiguity that is introduced in the SCC function by strong 

tonals in the signal spectrum [9, 36]. 

2.2.3 The Smoothed Coherence Transform (SCOT) 

Unless it is known that either G„ „ (f) or G„ „ (f) is the n.n.v '    n„npv ' 

dominant noise process, there is no reason to choose the weighting function 

W(f) = 1/G„ „ (f) over W(f) = 1/G„ ^ (f). The SCOT [9] avoids this r1r1 r2r2 
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uncertainty by selecting 

W(f) = l//G   (¥)!>        (f) 
2'2 

(2-11) 

The SCOT is then given by 

RSCOT (T) J (f) j2*fT 
«Y2    *- V2 

(2-12a) 

where 

Yr r (f) = rlr2 

Gr r <f > rlr2 

Kri(f)' 2'2 

1/2 (2-12b) 

In (2-12b), -y   (f) is the complex coherence between r,(t) and r9(t). rlr2 L c 

In terms of the GCC realization of Figure 2.1, the SCOT can be 

interpreted as employing two pre-whitening filters, H,(f) = 1/y/G(f) 
1       r^ 

and H9(f) = 1/y/G   (?T» followed by a cross correlator. Thus the SCOT 
£ r2r2 

exhibits advantages similar to the Roth processor, suppressing frequency bands 

where the noise power is large and reducing the effect of strong tonals in the 

signal, while eliminating the ambiguity of the Roth processor as to which 

noise process is dominant. If G„  (f) = 6„  (f), the SCOT and the Roth 
nlnl n~n,, 

technique are identical. Writing the SCOT, equation (2-12a), in the form of 

(2-8a) yields 
00 

R?C?T (T) -/   Cr r  (f) e"J2lTfD eJ2irfT  df <2-13) 12 V 2 

where C   (f) is the magnitude squared coherence (MSC), that is 
rlr2 
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cr r (f) = 
rl 2 

yr  r (f) rlr2 
(2-14) 

The SCOT assigns greater weight to the phase (time delay) information in 

frequency bands where the coherence is high. 

2.2.4 The Wiener Processor 

Recently a new GCC processor, referred to as the Wiener processor (WP) 

by the authors, has been proposed in [11]. This processor uses two Wiener 

prefilters to obtain the minimum mean square estimates of s(t) from r,(t), 

and of as(t-D) from r~(t) before computing the cross correlation. The 

prefilters are given by 

G (f)    , Gr,r„(f)  .0 _n 

vr       "Vi 
and 

2R m  a G   (f) 
H t*\ ss       rlr2   J2wfD        (0  .,., H2(f) = G—m= G—rn~~e       •        (2_15b) 

r
2r2 r2r2 

The corresponding weighting function is then the MSC, 

W(f) = H (f) H*(f) = C   (f) , (2-16a) 
1    *     rlr2 

and the WP computes the GCC function, 

RrPr <T> =/Cr r <f> Gr r <f> ^^   df'•     (2"16b) 

The WP suppresses the cross power spectrum in frequency regions where the 

coherence is low. Note that while the Wiener prefilters, H..(f) and H?(f), 

require knowledge of the attenuation parameter, a, the weighting function 

can be estimated directly from the received signals. 
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2.2.5 The Phase Transform (PHAT) 

The PHAT is an "ad hoc" technique which uses the weighting [10] 

W(f) = 1/ Gr r (f) rlr2 
(2-17a) 

or 

Wtf(f) = 1. (2-17b) 

Thus the PHAT computes the IFT of the phase function, 
CO 

RPHAT(T) =/>(f)eJ2,fx df (2_18a) 

1 2    -°° 

where for the model of (2-1) 

4>{f)  = -2*fD (2-18b) 

so that, ideally 

„PHAT 
rlr2 

(T) = 5(T-D) . (2-18c) 

In practice, only an estimate, ${f),  of the phase function can be 

PHAT 
obtained, and R „ (T) will not be an ideal delta function. The PHAT 

rlr2 

assigns equal weighting to the phase estimate throughout the frequency 

band, independent of SNR. Thus, the PHAT fails to suppress frequency bands 

where the SNR is relatively low and where the phase estimate is more likely 

to be in error. However, the PHAT effectively whitens the cross power 

spectrum and therefore eliminates the effect of strong tonals. 

2.2.6 The Maximum Likelihood (ML) Estimator 

The final weighting to be considered is that of the ML estimator [6]. 

This technique is identical to that proposed by Hannan and Thomson [12] and 

20 



is often referred to as the HT processor. The ML designation will be used 

in this work. As shown in Appendix A, the ML estimator is obtained by 

applying the weighting function 

W(f) = 
rlr2 

(f) 

i—rn~ T=T—m rlr2        rlr2 

thus 

RML ( 
rlr2 

T> ~J m 
(f) 

rlr2 
(f) 

(2-19a) 

■ eJ'*(f]  eJ'2wfT df.   (2-19b) 

The ML estimator, like the SCOT, weights the phase relative to the 

.SCOT, MSC. However, Wj|  (f) « >/C„„ (f) approaches unity when the coherence is 
rlr2 ,ML, large (note, 0 < C r  (f) < 1), whereas W"L(f) = C   (f)/(l - C   (f)) 

rlr2 ° rlr2       rlr2 
goes to infinity as the MSC approaches one. Compared to the SCOT, the ML 

estimator assigns much greater weight to the phase in frequency bands where 

the coherence is large. While the SCOT reduces the effect of strong 

tonals, the ML estimator tends to emphasize such tonals, where the 

coherence will be relatively large. In practice, the pertinent power 

spectra must be estimated and only an estimate of (2-19) can be obtained. 

Hence, only an approximate maximum likelihood (AML) estimator can be 

implemented. 
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CHAPTER 3 

TIME DELAY ESTIMATOR PERFORMANCE BOUNDS 

The Cramer-Rao lower bound (CRLB) is commonly used to set a bound on 

the variance of the time delay estimate. Use of the CRLB to predict time 

delay estimator performance is justified in that the ML estimator 

performance approaches CRLB performance for sufficiently long integration 

times, that is, the ML estimator is asymptotically efficient [23, p. 71]. 

In practice, the observation time is necessarily limited, and in many 

cases, the observation time will not be "sufficiently long" to attain CRLB 

performance. This leads to two important questions in the TDE problem. 

First, under what conditions is CRLB performance attainable, and second, 

what performance can be expected when conditions do not allow for CRLB 

performance. In this chapter, the CRLB, a correlator performance estimate 

(CPE) and a modified Ziv-Zakai lower bound (ZZLB) are investigated to find 

answers to these equations. 

3.1 The Cramer-Rao Lower Bound (CRLB) 

Consider any unbiased estimate, D(j}), of the time delay D, where R_ is 

an observation vector with conditional probability density function 

P(RJT). Then the following inequality for the variance of the delay 

estimate holds [23, p. 66] or [38, p. 316], 

a2 = E[(D(R) - D)2] : I 

8 In p(RIT) 

3T 

-1 

r=D 
(3-1) 
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i 2   i    2 provided that 3p(R|x)/3i and 3 P(R_|T)/3T'1 exist and are absolutely 

integrable. From equation (A-8), (see Appendix A), it follows that 

.2 
r32 In p(R |T)' 

3" 
T = E —2 (-1/2) J, 

3T 

(3-2) 

since the quantity c in (A-8c) is independent of T. Substituting (A-10) 

into (3-2) and noting that the term J~ is also independent of T yields 

ra2 In p(R |T)' 

3T 

= E 
3T 

7 (1/2) J3 

9     co 

= !_ y*E[Rx(f) R*(f)] 
Cr  (f) e 
rlr2 

j2irft 

df 

00 

G   (f) 
rlr2 

C . (f) 

(1 - C_ p (f)) 
rlr2 

a  J2irf(T-D)   '1'2 df 
3x 1 " Cr r (f) rlr2 

(3-3a) 

(3-3b) 

(3-3c) 

To obtain (3-3c) from (3-3b), the relation E[R.(f) R,(f)] = T G   (f) 

has been used. Substitution of (3-3c) into (3-1), after taking the 

indicated second partial derivative with respect to T, results in the 

following expression for the CRLB, 

2 s 2 
°5 ^ °CRLB 

C   (f) 

T /*(2*f)2  Ü  
-"i 1 - C„ „ (f) 

df 

rlr2 

-1 
(3-4) 
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The CRLB depends upon the signal and noise power spectra, in the form of the 

magnitude squared coherence (MSC), and is inversely proportional to the 

observation time, T. 

Now consider specific signal and noise power spectra, 

S /2 , o < |f | < B 

sss(f) - I 
o   s elsewhere 

(3-5a) 

and 

G (f) = nnv ' 

V2  •  ° < lf I <B 

o   , elsewhere 
(3-5b) 

where G (f) = G   (f) = G   (f). In this work, the signal-to-noise nnv     n,n, v '   n?n;?
v ' 3 

ratio defined as 

SNR = 
Gss(f)/Gnn(f) , o < |f| < B 

o , elsewhere 
(3-6) 

Note that this is the SNR at the input of a single receiver, 

power spectra, the MSC is given by 

,2 

For these 

cr r (f) = 
rlr2 

Gss(f)' 

(G (f) + G (f))' v ssv '        mv '' 

(3-7a) 

SNR' 
(SNR + 1) T (3-7b) 

Thus (3-4) can be written in terms of the SNR and the CRLB becomes 

?A 



'CRLB f   {2"f)' SNR 
2SNR + 1 

-1 
df (3-8a) 

-B 

Or 

CRLB 0     C D-^T 
OTT D      I 

for the power spectra of (3-5) 

1   2SNR + 1 
(3-8b) 

SNR' 

As discussed in [21], the CRLB exhibits different behavior at high and 

low SNR. Specifically, it can be shown that, 

2 log 
'CRLB 

= K + log 2 - log BJT - log SNR, SNR » 1 

and 

2 log aCRLB - K - log BH" - 2 log SNR, SNR « 1 

(3-9a) 

(3-9b) 

where K = log(3/8ir ). Thus, the high and low SNR approximations of 

log opmn are linear functions of log SNR, with the low SNR approximation 

having a slope twice that of the high SNR approximation. Further it is 

easy to show that the high and low SNR approximations intersect at 

log SNR =  -log 2, that is, when the input SNR at a single receiver is 

-3 dB, independent of the observation time and signal bandwidth. 

As discussed previously, the time delay is known a priori to be 

bounded by -L/c £ T £ L/c, where L is the sensor spacing and c is the 

propagation speed of sound in the ocean. Most TDE methods inherently 

utilize this knowledge to limit the range of the delay estimate. However, 

the CRLB does not incorporate this information to limit the variance of the 
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2 
delay estimate and arR, „ —>  « as SNR-><*>. Another shortcoming of greater 

significance is that when the observation time is not sufficiently long, 

the CRLB does not accurately predict time delay estimator performance. The 

explanation of this deficiency has to do with large estimation errors, 

which is the subject of the next section. 

3.2 Large Estimation Errors 

The ML estimate is a minimum variance estimate, that is, it attains 

the CRLB when the observation time is long enough. Additionally, when the 

estimation error is small, the variance of the ML estimate can be expected 

to be close to the CRLB. Therefore, the CRLB is a good estimator of TDE 

performance when the observation time is sufficiently long to ensure that 

the estimation error is small. To gain a better understanding of these 

relationships, a comparison of simulation results with the CRLB is shown in 

Figure 3.1. (See Appendix B for simulation details.) The signal and noise 

power spectra are given by (3-5) with B = 100 Hz, relative to a sampling 

frequency of 2048 Hz. In Figure 3.1(a), T = 2 seconds, and the simulation 

results are in good agreement with the CRLB for SNR >  -3 dB. Below -3 dB, 

the experimental variance deviates sharply from the CRLB. In Figure 

3.1(b), the observation time has been increased to 8 seconds. Now the 

experimental variance agrees with the CRLB for SNR j> -7 dB, but again 

deviates from the CRLB below this SNR. Based on these results, increasing 

the observation time allows the estimator to maintain CRLB performance for 

lower SNR, but below some threshold SNR, estimator performance begins to 

degrade rapidly relative to the CRLB. Apparently, there is a fundamental 

trade-off between SNR and the observation or coherent processing time. For 
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Figure 3.1 Comparison of CRLB and SCC Simulation Results 
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a given observation time, CRLB, or small estimation error, performance can 

be obtained above the threshold SNR. Below this SNR, large estimation 

errors must be taken into account and the CRLB is no longer applicable. 

To understand the source of such large estimation errors, consider the 

cross correlation function for two types of signals. First consider a 

narrowband source such that the bandwidth, B, is small compared to the 

center frequency, f  (B/f << 1). A typical cross correlation 

function for such a source signal in the absence of noise is depicted in 

Figure 3.2(a). The maximum occurs at the true delay, D, but adjacent peaks 

are nearly as large. To obtain CRLB performance, the processor must be 

able to resolve this ambiguity between peaks, which requires either a very 

large SNR or a very long observation time. A similar effect is observed 

for broadband signals. Consider a low-pass signal as in (3-5), Figure 

3.2(b) shows a typical cross correlation function for this type of signal. 

In this case, adjacent peaks are more widely separated, but at low SNR the 

peak value of the estimated cross correlation function may occur at one of 

these side lobes, yielding an estimate of the time delay greatly different 

from the true delay. These large estimation errors are often referred to 

as ambiguities for narrowband signals and as anomalous estimates for 

broadband signals. In the remainder of this chapter, methods of accounting 

for such large estimation errors in the time delay estimate are 

investigated, 

3.3 The Barankin Bound 

As noted in [23, p. 72], the Barankin bound is a greatest lower 

bound. However, computation of the Barankin bound proves to be exceedingly 
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Figure 3.2 Sources of Large Estimation Errors 
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difficult. Chow and Schultheiss have investigated a simplified version of 

the Barankin bound to address the problem of ambiguous estimates for narrow 

band signals [26]. While this procedure no longer yields a greatest lower 

bound, the resulting lower bound has been used with some success to address 

the ambiguity problem. In particular, the simplified Barankin bound 

exhibits a distinct threshold SNR. Above this SNR, the variance of the 

time delay estimate is characterized by the CRLB and below this SNR the 

Barankin bound exceeds the CRLB by a factor proportional to the square of 

2 2 
the ratio of the center frequency to the bandwidth (i.e., f /B ). 

However, the transition from the CRLB to the Barankin bound at the 

threshold SNR can not be clearly specified. 

Also, like the CRLB, the Barankin bound ignores the a priori 

information about the range of possible delay values, and the variance goes 

to infinity, as the SNR goes to zero. While this approach succeeds in 

predicting the threshold phenomena, it is not the complete solution to the 

problem. 

3.4 The Correlator Performance Estimate (CPE) 

The CPE was developed by Ianniello [27] and provides an estimate of 

the performance of the SCC method of TOE (see Section 2.2.1). While this 

approach does not yield a lower bound on time delay estimator performance, 

it does accurately estimate the performance of the commonly used SCC 

method. The CPE computes the probability of an anomalous estimate, and 

based on this probability, the variance of the time delay estimate is 

determined. The analysis presented here follows that of Ianniello [27], 
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which in turn is based upon an approximate analysis related to pulse 

position modulation systems [39, pp. 623-640]. 

The first step is to define an anomalous estimate more precisely. 

Consider the SCC function, R„ „ (T), of equation (2-3). Define the 

signal correlation time as 

rlr2 

Tc A Rss
(o)/Rss(x) dT   ' (3"10: 

The signal is highly correlated over the correlation time, T  and the 

correlation is relatively small beyond this value. If the range of 

possible delay values is limited by +D  there are approximately 

M = 2D /T independent values of the SCC function. Let R = R   (T ) 
o c m   rir? m 

denote these M independent values, and assume the true delay is located 

at one of the T  say T = D. An anomalous estimate occurs when 

|D - D| > T /2, that is when the delay estimate is farther than T /2 

from the true delay. The event A, defined as 

A = [R > R , for at least one T ] , (3-11) L m   o' mJ ' v   ' 

is a reasonable approximation to what is meant by an anomalous estimate 

[38, p. 629]. Since the Rm are assumed to be independent, the 

probability of A can be formulated analogously to the probability of 

error in the communication of M equally likely signals, so that 

[39, p. 258] 
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P[anomaly] 2 P[A] = 1 - yP(R0; f   P(R ) dR 

M-l 

dR    (3-12) 
0 

where p(RQ) is the probability density function (pdf) of R , and 

P(Rm) is the pdf for any R , which are assumed to have identical 

distributions. 

Now expressions for the pdf of R and Rm are required. Assume the 

signal and noise power spectra are as in (3-5). Then the autocorrelation 

functions R$S(T) and Rnn(t) can be written as 

RSS(T) =SOB p(x) (3-13a) 

and 

Rnn(x) =NoBp(T) (3-13a) 

where 

P(T) = 
WT>  Rnn(T)  sin2,x B 
^m - K^T - -T7TB- (3-13c) 

is the normalized autocorrelation function of both the signal and noise. 

Note that Rss(o) = SQB and Rnn(o) - NQB are the variances of the 

signal and noise, respectively. For a large observation time - bandwidth 

product (BT >> 1), the mean values and variances of R„ and R are qiven r 0    m    3 

by [40, p. 183] 

E[R0] = S0B , E[Rm] = 0 

4    * ^B2(S0 ♦ N0)2 ♦ S2] IK  , 

(3-14a) 

(3-14b) 

3? 



and 

4 s ß2(so+ v2/K • (3-14c) 

where 

K = 

00 

(T) di -1 = 2BT (3-14d) 

Assuming that R and R have Gaussian distributions, their pdfs are 

completely specified by their means and variances in (3-14). Substitution 

of the expressions for p(RQ) and p(Rm) into (3-12) yields. 

P[A] = 1"/ i2ir\T'2 exp(:(Ro" s° B)2/2C
2 

QJ 

0 

J      [2™\  )      " exp <l2°l mJ 
dR m 

M-l 
dR (3-15) 

Making the change of variable x = R /aD and y = R /aD ,  (3-15) 
OK m    K o m 

can be written as 

P[A] 
oo i i7* ■—■ exp[-(x - x)2/2] 

XX 

f    -p=.   exp[-y2/2] dy 
J      /27 

1M-1 

dx (3-16a) 

J 
where 

BS. 
x = yÜT SNR 

{o       [SNR2 + (SNR + l)2] 
TO 

(3-16b) 

X  =  aR   /oR 

o      m 

-.1/2 

1 + SNR' 

(SNR + 1)' 
(3-16c) 
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and where SNR £ S0/NQ. Evaluating (3-10) yields Tc = 1/(2B), thus, the 

number of independent values of the SCC function is M = DR. Equation 

(3-16a) must be evaluated numerically to obtain the probability of anomaly 

for a given set of parameters, B, T, DQ and SNR, (see Appendix C for 

computational details). 

The variance of the time delay estimate can be computed as the 

probability of anomaly times the variance, given an anomaly, plus the 

probability of no anomaly times the variance, given no anomaly. If no 

anomaly occurs, the estimation error is small and the CRLB applies. When 

an anomaly does occur, it has been assumed that the anomalous estimate is 

equally likely to occur at any of the T   Therefore, the variance, given 

no anomaly, is approximately that of a random variable uniformly 

distributed in the interval [-DQ, D ], or 0^/3. Then, the CPE for 

the variance of the time delay estimate is given by 

4PE " pW  Do/3 + d " pEA]) CTCRLB    •       {3_17) 

The CPE and the CRLB are compared in Figure 3.3. The CPE is 

characterized by three regions: 1) at low SNR, P[A] a 1 and the variance 

is limited by prior information about the range of possible delay values; 

2) at intermediate SNR, there is a transition from the prior information 

limit to the CRLB, and 3) at high SNR, P[A] a 0 and the CPE coincides with 

the CRLB. The SNR at which the CPE begins to deviate from the CRLB is 

referred to as the threshold SNR, (SNR., in Figure 3.3). 
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Figure 3.4 Comparison of CPE, CRLB and SCC Simulation Results 
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The CPE is compared with simulation results in Figure 3.4(a) for 

T = 2 seconds and in Figure 3.4(b) for T = 8 seconds. The theoretical 

variance is in close agreement with the experimental variance and predicts 

the threshold SNR within = 1 dB. Although the CPE is based on an approximate 

analysis and several simplifying assumptions are made, Figure 3.4 shows that 

the CPE is, nevertheless, a very useful technique for predicting time delay 

estimator performance. However, the CPE was developed specifically for the 

SCC method of TDE and is only a performance estimate, not a performance 

bound. This leads one to question whether there may be a time delay 

estimator which can do better than the CPE predicts. .Therefore, it is still 

of interest to find a lower bound for TDE, which is tighter than the CRLB. 

Note that if a lower bound could be found, which is close to the CPE, this 

would imply that the SCC method is nearly optimal. 

3.5 The Ziv-Zakai Lower Bound (ZZLB) 

The ZZLB was derived by Ziv and Zakai in [41], for the signal parameter 

estimation problem in communications. Improved versions of this bound were 

proposed independently by Chazan, Zakai and Ziv [42] and by Bellini and 

Tartar [43]. Recently, the ZZLB has been applied to the time delay 

estimation problems in works by Weiss, Weinstein and Ianniello [28-31]. In 

particular, the ZZLB for the variance of the time delay estimate is derived 

for the case of narrowband signals in [29] and for the case of low band 

signals in [30]. In this section the ZZLB is derived for the broadband 

signals of (3-5), following the procedure outlined in [30]. 
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The ZZLB is based on the probability of error in deciding between two 

hypothesized values, say T and i +  A, (A > 0), of the parameter to be 

estimated. Here the parameter of interest is again the time delay, D. Let D 

be an estimate of the true delay, obtained from an arbitrary estimation 

scheme. Now consider the following suboptimal decision procedure: 

1flD- T| < |0- X-A| , then D - x, 

if|D-x|>|D-x-a|    ,  then D =  T + A. (3-18) 

That is, the decision rule selects x, if the estimate is closer to T than to 

T + A, and selects x + A, if D is closer to x + A than to x. Note that the 

optimum decision rule would be based on the likelihood ratio test as 

discussed in [23, pp. 23-27]. The probability of error for the decision rule 

of (3-18) is given by, 

P[T] P[deciding x + A |x ] + P[x + A] P[deciding T | T + A]   (3-19) 

where P[x] denotes the probability of T occuring and P[deciding T + &|T ] is 

the conditional probability of deciding that T + A is true, given that x is 

true. Assuming that T and T 
+ A are equally likely to occur, (3-19) can be 

written as 

(1/2) P[D - x > A/2 IT ] + (1/2) P[D - x - A < - A/2 I T + A] (3-20) 
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Defining the estimation error as e = D - D, the minimum attainable 

probability of error for this binary decision problem, P_(T, T + A), must 

be less than or equal to the probability of error for the suboptimum decision 

rule of (3-18), thus 

P (T, x + A) < (1/2) P[e > A/2|x ] + (1/2) P[e < -A/2 | T + &]. (3-21) 

The range of possible delay values is again assumed to be bounded by 

+ DQ, so that T and A must satisfy the condition that T, x + A e [-D , DQ], 

or equivalently, 

-DQ < T < D -A, o < A < 2 D . (3-22) 

Integrating (3-21) with respect to T over the interval [-D  D -A] yields 

D  -A 

J Pe(T,    T    +   A) 

-°o 

?o-& 

<   (1/2)    f       fp[e > A/2|T ] + P[e < - A/2 |   T + A]l   dx 

-Do 

DQ-A DQ 

=(1/2)/      P[E  > A/2|T ] dx +  (1/2)   f    P[e<-A/2|T]d 

-Dn -Dn+A 
0 0 

D 

/ 
-D 

<   (1/2)J      P[|e|  > A/2|x ] dx (3-23) 
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Now let F(x) represent the average of P[|e| _> X|T ], where T is uniformly 

distributed over C-D  D ], then 

F(X) Ä JL    /  P[|e| > X|T] d 
°-D_ 

2JT PCIe | > x] 
0 

(3-24a) 

and from (3-23) 

D -A 

f        Pe(x, T+ A) dx < Do F(A/2) 

-D 

(3-24b) 

Multiplying both sides of (3-24b) by A/DQ and integrating with respect to 

A over [o, 2DQ] yields 

2DQ   D0-A 2D0 

J- f     A J       Pe(.T, T + A) dT dA <  I" AF(A/2) d 
o    -D. 

= 4 / x F(x) dx  , x = A/2 

o 

2D. 

< 4 /    x F( 

0 

K) dx 

= 2x2 F(x) 
0 

2Do ^ 

- l(   x2dF(x) (3-25) 
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Since F(x) = P[ |e | >  x], it can always be assumed that F(2D ) = 0. Note 

if F(2D ) ^ 0, this implies that there is a non-zero probability that the 

estimation error |c I > 2DQ, or 6 is more than 2DQ from the true delay, D. 

However, it is known a priori that D e [-D  D ]. Thus if F(2D ) ^ 0 

the estimate can be improved by an obvious modification (e.g., let D = 0 if 

lDl > D0)« Also note that the mean square error, or for an unbiased 

estimator, the variance of the time delay estimate is given by 

2D 

■ ■ -• 
dF(x) . (3-26) 

The ZZLB of [42] is obtained by substituting (3-26) into (3-25) and 

solving for a^, 

±   W 

2Dn     Dr 

o o   -D. 

Do-A 

PJT, T
+
 A) dt dA (3-27) 

In [43], Bellini and Tartara note that F(x) is a non-increasing function 

of x. Therefore, a tighter lower bound for the right hand side of (3-24b) is 

given by 

/ 
-D. 

Do-A 

P (T, T + A) dx < Do FU/2) ( 3-28) 

where G[*] is a non-increasing function of A, obtained by filling in the 

valleys, if any exist, of the bracketed function. This "valley filling" 
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process is illustrated in Fiqure 3.5. Proceeding as before, the modified 

ZZLB is given by 

CT~ - ~7TT D   dUo 

2Dn ?cTA 
f P,(T. 
-D_ 

T + A)dT dA. (3-29) 

In general, it is not possible to obtain a closed form expression for 

P
6(T, T + A). For the TDE model of (2-1), the Chernoff bound can be used to 

obtain a good approximation of P (Tf T + A). The calculation of this 

approximation is given in Appendix D. Under a large observation 

time-bandwidth product (BT >> 1), it is found that 

p
e(t, T + A) = PS(A) , independent of T 

and 

where 

PP(A) = exp[a(A) + b(&)].Q(>/2b(A)') , 

(3-30a) 

(3-30b) 

a(A) = -IJ    In [1 + Y(f, A)] df , 
o 

co 

b(A) = IJ     y(f, A)/(l + Y(f, A)) df  , 

(3-30c) 

(3-30d) 

G^s(f) sin
2TrfA 

TlTf&> = LGn: (f) * Gn: (f)j Gss(f) * s^rn s^m •(f, A) = 
nlnl n«n? 

(3-30e) 

and 

Q(x) = 
spiv 

CO 

y2/2 dy (3-30f) 
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Additionally, it is shown in Appendix D, that P6(A) is bounded by 

P6(A) > exp A) df UTJ   Y(f,A) dfj
1 /2 

(3-31) 

Since pe(A) is independent of t, the expression for the ZZLB in (3-27) 

can be simplified to yield 

2D, 

I   >    ^~ f    A G[(2Do-A) Pe(A)]dA (3-32) 
D   u o 

Now an expression for the ZZLB is derived for the specific signal 

and noise spectra of (3-5). Equation (3-30e) can be written as 

it  .\   SNR2 sin2TrfA 
Y(T.A) = 2  SNR + 1 (3-33a) 

= SNR' sin SfA (3-33b) 

where 

CMD. 
A   SNR bm   " 2SNR + 1 (3-33c) 

and where SNR is defined in (3-6). Substituting (3-33b) into (3-30c) and 

(3-30d) yields 

.-T/I.I a(A) = -T / ln(l + SNR' sin wfA) df (3-34a) 

and 

b(A) = T   J   SNR'  sin2wfA/(l + SNR'  sin2irfA) df  . (3-34b) 
o 

43 



Taking the derivative of a(A)  and D(A) with respect to A, one obtains 

after simplifying, 

^-■'(^--V  f(# <« <3-35*> 

M£l. b.(A) . T /   «ilLdf (3-35b) 
d& -o    ß(f)2 

d 
IK [a(A) + b(A)] = ij   f[£j (^ - 1) df (3-35c) 

where 

a(f) = irf SNR1  sin2irfA (3-35d) 

S(f) = 1 + SNR'   sin2*fA    . (3-35e) 

With a little thought, it can be seen that for A e [0, 1/2B], b'(A) >  0 

with equality holding only for A = 0. Then, since b(A) >_ 0 for all A, 

b(A) is a positive monotonically increasing function of A. Thus, the 

term Q(v
/2b(A)) of equation (3-30b) is monotonically decreasing for 

A e [0, 1/2B]. Similarly, a'U) + b'(A) < 0 for all A e [0, 1/2B] with 

equality holding only for A = 0. "From equation (D-9), a(A) + b(A) <_ 0 

for all A, so that a(A) + b(A) is a negative monotonically decreasing 

function for A e [0, 1/2B]. Thus, the term exp[a(A) + b(A)] in (3-30b) 

is also monotonically decreasing. Therefore, for A e [0, 1/2B], P6(A) 

is a monotonically decreasing function, and the probability of error in 

correctly deciding between the hypothesized delays, x and T + A, 

decreases as the separation, A, increases. This is an intuitively 

pleasing observation. 
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Next consider the behavior of PS(A) for A > 1/2B. Using the 

change of variable Q - fA in (3-34a) and (3-34b) yields 

~J^ a(A)  = ^7     |   ln(l + SNR'   sin2irfi)  cto (3-36a) 

and 

■it bU) =T    /   SNR'  sin2irn/(l + SNR'  sin2irfl) dn. (3-36b) 
o 

The integrands in these equation are functions of sin^n   which  is periodic 

in fi with a period of 1.    Note also that sin irfi is an even function.    Then 

defining A    = n/2B, where n is a positive integer,   (3-36)  becomes 

n/2 

a(A ) = - —     /    ln(l + SNR'  sin^n) dv (3-37a) 
n n    -fi/2 

and 

n/2 

*J -   ¥•    I    SNR'  sin2!^ /(I + SNR'  sin2irn) d 
n n    -n/2 

Now (3-37a) can be solved for a(AnJ  as follows, 

bUJ -   TT    I    SNR'  sin irn /(l + SNR'  sinSn) dn„ (3-37b) 
-n/2 

a(0 = -BT    /     ln(l + SNR'  sin2irfi) dfi 
-r/2 

/   ln(l + 
To 

= -BT /   ln(l + ^L - ^- cosTrn') dn',  n' = 2n (3-38) 
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This integral can be found in integral tables [44, p. 461, eq'n 709] and 

after some algebra 

a(an) = -2BT ln[(l +>/!"+ SNR')/2] (3-39) 

Similarly b(An) can be written as 

1/2 
b(&n) = 2BT J     SNR' sin27rn /(l + SNR' sin2ir^) do.       (3-40) 

Again resorting to the integral tables [44, p„ 432, eq'n 343] and a 

little algebra, it can be shown that 

bU , = RTV/I;SNR- -l_ 
n v/l + SNR' 

(3-41) 

Substituting (3-39) and (3-41) into the expression for P-(A) in (3-30b) 

gives 

Pe(An) = exp 4-BT 

x Q 

21n (LI    1 + SNR'\ _ A^S^-l 

(' 

2Br Jl  + SNR' - l\ 

J\  +  SNR'  / 

1/2 

4Pe (3-42) 

46 



This observation leads to a bound for the quantity G[(2D - A) P (A)] 

in (3-32). The procedure followed to obtain the bound is described 

pictorially in Figure 3.5. A possible curve for PeU) is sketched in 

Figure 3.5(a), and the corresponding curves for (2D - A) P (A) and 

G[(2DQ - A) P6(A)] are sketched in Figure 3.5(b). Define the rectangular 

gate function U(A, A ) as 

U(A, An) = 
1 . Än-i < 4 < Än 

0 , elsewhere . 

Then, as seen from Figure 3.5(c), 

G[(2Do - A) Pe(A)] > (2D0 - An) Pe U(A, An) (3-43a) 

> (2Do - 1/(28) - A) Pe, (3-43b) 

The expression on the right hand side of (3-43a) is represented by the 

decreasing step function in Figure 3.5(c), and the linear, dashed line 

represents the final expression in (3-43b). 

This bound will prove to be sufficiently tight except near A = 0, 

where the value of Pg(A) cannot be closely approximated by Pg. In this 

region, consider the bound in (3-31) for P_(A), 

P6(A) > exp 

00 

-If Y (f.A) df 
(00 

2T/ Y(f,A) dAJ
1/: 

(3-31) 
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A pe(A) 

Pa  

1/2B 2/2B 3/2B 4/2B 
A) POSSIBLE REPRESENTATION OF Pe(A) 

4J_2D0-A) Pe(A) 

G[(2D0-A) Pe(A)] 

-A 

1/2B 2/2B 3/2B 4/2B 
B) VALLEY FILLING FUNCTION, G[.] 

G[(2d0-A) Pe (A)] 

(2D0-A) Pe U (A, An) 

7(2D0-^-A) Pe 

^B 
2B 

1/2B 2/2B 3/2B 4/2B 
C) BOUND FOR G [(2D0-A) Pe (A)] 

A 

Figure 3.5 Obtaining a Lower Bound for G[(2D - A) PeU)] 
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Now, simplifying the arguments of exp[.] and Q(.) in (3-31), 

2T /y(f.A) dA = 2T TSNR' sin2*fA df 

o o 

.-/ 
SNR' (irfA)2 df 

2 2 
= n A (3-44a) 

where 

2 
n = 9 

2 
SNR' B3T/3 . 

Simi larly, I 

T 
"7 / 

r2(f, A) df > - I /  SNR'2 

where 

(3-44b) 

df 

4 4 » 
-v AH (3-45a) 

v4 = TT4 SNR'2 B5 T/10. (3-45b) 

Substituting (3-44) and (3-45) into (3-31) yields 

P6(A) > exp(-v4A4) Q(nA), for small A . (3-46) 
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Then, from (3-43b) and (3-46), the function G[(2DQ - A) P (A)] is 

bounded by 

(2DQ - A) exp(-v4A4)  Q(nA)   ,  o < A < z 

G[(2Do - A)  Pe(A)]  > / (2Do -^ - A)  P » * < A < 2Do - 2B 

,  2D0-fß< A< 2Do. (3-47) 

The value for z is yet to be defined. Note that (2D - 1/(2B) - A) < o 

for A > 2DQ - 1/(2B). Therefore, the bound is set to zero in the third 

region in (3-47). 

The choice of z is somewhat arbitrary, but compare the expressions 

for Pg(z) in equations (3-31) and (3-42). Select z to satisfy the 

condition 

n z = v/2b(An) 

2BT v/1 + SNR' - 1 

N/1 + SNR1 

1/2 
(3-48) 

Thus, the arguments for Q(*) are chosen so that Q is continuous between 

regions 1 and 2 in (3-47). Substituting (3-44b) into (3-48) and solving for z 

yields, 

z = = JL 1/21 1/2 
1 - (1 + SNR')-17^ 

TT B SNR1 
(3-49) 
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As SNR' > °° , z » 0, and as SNR' > 0 , application of L'Hospital's rule 

shows that 

z *fe~/( /F irB) = 2 g B ; thus, 0 < z < yg- . 

The expression for the ZZLB is obtained by substituting (3-47) into 

(3-32) to give 

2   1 
A (2DQ - A) exp(-v

4A4) Q(HA) dA 

20 -1/(2B) 

2D0-^-- A) Pe dA (3-50) 

The two integral terms on the right hand side of (3-50) will be considered 

separately. The first integral can be simplified as follows 

/ A (2D - A) exp(-v A4) Q(nA) dA 

•/ 
1  / 4 4 4 

= -j-J   y (2nD - y) exp(-v y /n ) Q(y) dy, y=nA. 
n  o 

Now consider the term v /n , using (3-44b) and (3-45b), yields 

(3-51) 

4/ 4    9 „  1 (3-52) 

since BT >> 1 by assumption. Since the major contribution of the 

integral in (3-51) is for small values of y, the exponential term can be 
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approximated by 1. Also note that over the range of the integral in 

(3-51) 

2nDQ - y < n (2DQ - z) = 2nD0 . (3-53) 

Then (3-51) becomes 

/ 
A (20o - A) exp(-v

4A4) Q(nA) dA 

if 2D 
-f  / y Q(y) dy 
n  o 

(3-54) 

The second integral in (3-50) can be immediately evaluated to give 

/ 

2D -1/(2B) o 
A (2DQ - 1/(2B) - A) Pe dA 

= P. 
\ ° -7E-) 
[2D„   1 ) A2 - A3 0 - 7E~   T    T 

2D0-1/(2B) 

Pe [ D0A
2 - A3/3] 

2D, 

• 2Do » US 

- pe [4Do/3 ~ Do z2 - z3/3] 

4Pe D^/3 , D0 » z (3-55) 

Substituting (3-54) and (3-55) into (3-50) yields 

iZ r °2 > K   J   y Q(y)dy + 2P
e

Do/3 

D   n   o 
(3-56) 

Thus, a closed form expression for the Ziv-Zakai lower bound for the 

variance of the time delay is given by (3-56). 
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One final simplification can be made by evaluating the integral term 

in (3-56) as follows, using integration by parts 

jZ  y Q(y) dy . 1^1    nZ . JZ iS^CL  dy 

= n2z2 Q(nz)/2 - (1/2)/ y2Q'(y) dy (3-57) 

Recall that 

Q(y) = (2,)-1/2/e-a2/2da . (3-58) 

Using Leibniz rule yields 

Q'(y).-(2,r1/2e-y/2 . (3-59) 

Then the integral term on the right hand side of (3-57) becomes 

;z nz      2 

y2*'(y) dy = -^— Jy . y e"y /2 dy 
2 v2ir  0 

(3-60a) 

" 2 v/27 L 

nz 

nz exp(-n
2z2/2 ) -J^12 dy (3-60b) 

nz 
2 N/2~* 

exp(-n2z2/2) + £ *(nz) -I       , (3-60c) 
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where (3-60b) is obtained from (3-60a) by integration by parts, and 

(3-60c) is obtained by re-writing the integral term in (3-60b) in terms 

of 0(y). Finally substituting (3-60) into (3-57) and (3-57) into (3-56), 

the final expression for the ZZLB is given by 

2 
[(nz)2 - 1] t(nz) - -ßr exp(-n2z2/2) + \ 

* 2 Pe D^/3 (3-61) 

where nz is defined in (3-48), n    is given by (3-44b), and P is 

given by (3-42). 

As SNR » 0, Pg » 1/2 (see (3-42)) and nz » 0 (see (3-48)), and the 

ZZLB reduces to 

2     2 aZZLB = V3 ' (3-62) 

This is the same expression obtained from the CPE for low SNR, when 

P[anomaly] = 1. At low SNR, the variance is limited by the a priori limit 

on the range of possible delay values. At high SNR, P » 0 and nz » v/2~BT, 

and (3-61) becomes 

'zzLB   ~rr   ' 
4n 

(3-63) 

Substituting for n from (3-44b) and expressing SNR' in terms of SNR using 

(3-33c) yields 

2 3 1        1 + 2SNR 
azzLB = 17 " ?T '        ^~ 

=  a CRLB 
(3-64) 
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At high SNR, the ZZLB coincides with the CRLB. Thus, the ZZLB exhibits 

behavior similar to that of the CPE. The ZZLB, CPE and CRLB are compared in 

Figure 3.6. The ZZLB is characterized by a prior information limit, a 

transition region, and the CRLB at low, intermediate and high SNR, 

respectively. The only difference between the CPE and ZZLB is that the ZZLB 

is somewhat smaller than the CPE in the transition region and predicts a 

threshold SNR that is somewhat lower than that predicted by the CPE. This is 

not surprising since the ZZLB is a lower bound and the CPE is only a 

performance estimate. A comparison of simulation results for the SCC method 

of TDE with the ZZLB is shown in Figure 3.7(a) for T = 2 seconds and in Figure 

3.7(b) for T = 8 seconds. Note, these are the same simulation results as in 

Figures 3.1 and 3.4. The simulation results and the ZZLB are seen to be in 

good agreement, with the ZZLB predicting the threshold SNR extremely well. 

A listing of a computer program which calculates the CRLB, the CPE and 

the ZZLB is given at the end of Appendix C. Also included are listings of 

subroutines which evaluate the probability of anomaly for the CPE and the Q 

function required for both the CPE and the ZZLB. 
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Figure 3.6 Comparison of ZZLB with CRLB and CPE 
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Figure 3.7 Comparison of ZZLB, CRLB and SCC Simulation Results 

57 



CHAPTER 4 

THRESHOLD EFFECT CONSIDERATIONS FOR TDE 

The CPE and the ZZLB both predict a threshold effect in the 

performance of TDE methods. Above a threshold SNR, time delay estimator 

performance is characterized by the CRLB, while below the threshold, 
« 

performance degrades rapidly relative to the CRLB. Simulation results for 

the SCC method corroborate these predictions by the CPE and the ZZLB, as 

seen in Chapter 3. In this chapter, the threshold effect is investigated 

in greater detail and the implications of this effect are considered as 

related to coherent and incoherent processing techniques of TDE. Also, 

additional simulation results are presented to further substantiate the 

theoretical predictions and to allow comparison of several different GCC 

methods. 

4.1 Behavior of the Threshold SNR 

The effect on the ZZLB of varying the observation time, while keeping 

B and DQ fixed, is shown in Figure-4.1. The threshold SNR decreases as 

the observation, or coherent processing time, T, is increased. However, 

the value of the variance of the time delay estimate (or equivalently, 

log Op, as in Figure 4.1) at which the ZZLB begins to deviate from the 

CRLB remains essentially constant, independent of the observation time. To 

attain CRLB performance at SNR below the threshold SNR for a given 

observation time, requires that the observation time be increased 

sufficiently to lower the threshold SNR below the desired operating SNR. 
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Q 
b 
o 
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SNR(dB) 

Figure 4.1 Effect of Varying Observation Time on ZZLB 

(B = 100 Hz, D0 = 1/16 second, T = 2, 8, 32, 128, 512 seconds) 
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Consider the CRLB and the ZZLB as functions of the SNR, with all other 

parameters held constant. Below the threshold SNR, the ZZLB quickly becomes 

an order of magnitude larger than the CRLB. Thus, as suggested in [31], the 

threshold SNR can be approximated by the SNR which satisfies the condition 

2 
'ZZLB ' = 2aCRLB (4-1) 

2       2 
where ojjyn  anc' apRLB are 9""ven by (3-61) and (3-64), respectively. 

The particular SNR for which (4-1) holds is given by 

2 
SNR(h " h '* |_(4A>). (4-2a) 

where 

F(x) = x^Q(x) (4-2b) 

and recall that 

Q(X) . w-wfe-y'" dy. (4-2c) 

In (4-2a), F~ (•) denotes the larger of the two solutions for the 

inverse of F(x). Also, recall the_two definitions of signal-to-noise ratio 

used in this work, 

(4-3a) 
SNR = ATT , 0 < f < B y^ 

and 

SNR 
SNR' = 2SNR + 1 

(4-3b) 
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Note that (4-2a) is expressed in terms of SNR'. For SNR << 1, 

SNR' = SNR and for large BT product, the threshold SNR becomes very 

small as seen in Figure 4.1. Thus, for large BT, (4-2a) can be written 

in terms of SNR as 

- 1  c-1 
\/BT 

sNRth - ^ F; .(*™r). (4-4) 

Given that B and DQ are fixed and that BT is large, SNRth is approximately 

inversely proportional to -Jl.    Moreover, F~ (•) is a relatively weak 

function of its argument (i.e., an order of magnitude change in the argument 

produces a comparatively small change in F~1(-). Therefore, to a good 

approximation, SNRth is inversely proportional to >/BT» for large BT. 

Analytical considerations leading to (4-2a), given (4-1), are given in 

Appendix E. 

The behavior of the CPE due to increasing observation time is 

essentially the same as that of the ZZLB as illustrated in Figure 4.2. 

Nuttall has shown in [45] that the threshold SNR for the CPE can be 

approximated by 

SNR*. =     X   (4-5a) vth 
vl^x2/2 - x 

where 

and where Q-1(') denotes the inverse of ()(•)• For large BT, x is small and 

(4-5) becomes 

SNRth •£40M • 
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Note the similarity between (4-4) and (4-6). The function Q (•) is 

also a relatively weak function of its argument and the threshold SNR is 

again approximately inversely proportional to /iff". However, to obtain 

SNRth from (4-5) or (4-6), the probability of anomaly, P[A], for which 

the CPE begins to deviate significantly from the CRLB must be known. A 

value of P[A] = 5 x 10  has been found empirically to give good 

agreement between the threshold SNR computed via (4-5) and that observed 

in Figure 4.2. 

Values of the threshold SNR for the ZZLB, equation (4-2), and the 

CPE, equation (4-5), for various observation times are given in Table 

4.1. Note that these values are in terms of SNR in dB. Equation (4-4b) 

can be used to obtain the corresponding values in terms of SNR'. 

T (seconds) 
CPE 

SNRtn(dB) 
ZZLB 

SNRth(dB) 

2 -2.3 -4.3 

8 -6.6 -8.0 

32 -10.1 -11.3 

128 -13.3 -14.6 

512 16.4 -17.7 

Table 4.1 Calculated Threshold SNR Values for CPE and ZZLB 
(B = 100 Hz, DQ = 1/16 sec, P[A] = 5 x 10"6 for CPE) 
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4.2  Implications of the Threshold Effect 

The threshold effect has particular significance relative to the 

issue of coherent versus incoherent signal processing for TDE. First, 

observe that the parameter, T, referred to as the observation time in the 

expressions for the CRIB, the CPE, and the ZZLB, is actually the coherent 

processing time. If the observation time is T seconds, the performance 

predictions of Chapter 3 assume that the time delay estimate is obtained by 

coherently processing all T seconds of data coherently, resulting in a 

single estimate of the time delay. 

An alternative method, which is attractive in many TDE applications, 

divides the T seconds of data into N sections, each of length T/N seconds. 

The N sections are processed individually to obtain N time delay estimates, 

one estimate for each T/N second data section. The N delay estimates are 

then averaged to obtain a final time delay estimate after T seconds. This 

alternative method is referred to as incoherent processing. For the 

incoherent processor, the coherent processing time is reduced to T/N 

seconds for each of the N sections, although the total observation time is 

still T seconds. 

Above the threshold SNR, time delay estimator performance is 

characterized by the CRLB, and a£R, „ is inversely proportional to the 

coherent processing time. Now consider the performance of the incoherent 

processor. For SNR greater than SNRy,N, the threshold SNR for a coherent 

processing time of T/N$ the variance of the time delay estimates obtained 

from the T/N second data sections is proportional to N/T. The incoherent 
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processor then averages the N time delay estimates, which reduces the 

variance by a factor of N, assuming the N estimates are independent [36, 

p. 245]. Thus, for SNR > SNRT/N, the variance of the time delay estimate 

for the incoherent processor is proportional to (N/T).(l/N) = 1/T. This is 

the same performance attained by coherently processing all T seconds of 

data to obtain a single time delay estimate. However, for SNR < SNRy,.. 

the performance of the incoherent processor degrades rapidly, while the 

coherent processor maintains CRLB performance over the range 

SNRj < SNR < SNRT/N, where SNRj represents the threshold SNR for a 

coherent processing time of T seconds. For this range of SNR, the coherent 

processor exhibits significant performance gains compared to the incoherent 

processor. 

This effect is illustrated in Figure 4.3 for the case of T = 8 

seconds and N = 4 sections (B = 100 Hz and DQ = 1/16 second). The 

coherent processor operates on data sections 8 seconds long, .that is, the 

coherent processing time is 8 seconds. The incoherent method processes the 

data in 4 sections, each 2 seconds long, so that the total observation time 

is again 8 seconds. The predicted performances for the coherent and 

incoherent techniques are shown by the curves labelled ZZLB (T = 8, 

coherent) and ZZLB (T = 8, incoherent), respectively. The third curve, 

labelled ZZLB (T = 2, coherent), is the ZZLB for a coherent processing time 

of 2 seconds. The variance of the incoherent method is reduced by a factor 

of 4 relative to the performance of a coherent processor for T = 2, due to 

the averaging of the 4 estimates. This appears as a constant offset 

between the curves ZZLB (T = 2, coherent) and ZZLB (T ■ 8, incoherent) on 

the log aD vs SNR (dB) plot of Figure 4.3. For SNR > SNR2, the 
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performance of the coherent and incoherent methods is identical and 

coincides with the CRLB fons/t = 8. For SNR < SNR~, the variance of the 

incoherent processor increases rapidly, while the coherent processor 

continues to attain CRLB performance until the SNR falls below SNRg. In 

this example, the incoherent processor begins to deviate from the CRLB at 

SNRp = -2 dB, while the coherent processor maintains CRLB performance for 

SNR approximately 4 dB lower than SNR2 (i.e., for SNR > SNRg = -6 dB). 

In general, for large BT the threshold SNR is approximately 

proportional to 1/,/T, as noted previously. Thus, quadrupling the coherent 

processing time lowers the threshold SNR by a factor of 2, or by 3 dB. 

Similarly a factor of 64 increase in the coherent processing time will 

lower the threshold SNR by approximately 9 dB, see Table 4.1 and 

Figure 4.1. Therefore, coherent processing provides much better estimates 

of the time delay relative to incoherent processing for SNR below the 

threshold for the incoherent processor, SNR,-,.., but above the threshold 

for the coherent processor, SNRy. For the signals considered here and 

for large BT, 

SNRT = SNRT/N /N/N (4-7a) 

or, in dB, 

SNRT (dB) = SNRT/N (dB) - 5 log N. (4-7b) 

For example, if a 100 second data segment were available, and the 

incoherent processor broke the data into 100 sections, each 1 second long, 

the incoherent processor would suffer a ~ 10 dB loss in the threshold SNR 

relative to the coherent processor. Performance gains can also be realized 

by increasing the signal bandwidth for a fixed observation time, as seen 
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from equations (4-4) and (4-6). In many applications, and in the passive 

sonar problem in particular, the bandwidth of the source cannot be altered 

to improve performance. However, these results indicate that the processor 

should be designed to operate over the full bandwidth of the signal, when 

the signal and noise spectra are as defined in (3-5). Finally, note that 

to ensure the effective independence of the N estimates averaged by the 

incoherent processor, the length of each data section must be much greater 

than the delay value (T/N >> D). If the N estimates are not independent, 

the incoherent processor suffers a further degradation in performance 

relative to the coherent processor. 

The performance gains, obtained by increasing the coherent processing 

time, are achieved at the expense of increased complexity in the coherent 

processing algorithm. As the coherent processing time is increased, it is 

usually necessary to compensate for the effect of time variations of the 

time delay (e.g., due to source motion). This requires a substantially 

more complicated processor than the standard GCC approach for the case of a 

fixed time delay as described in Chapter 2. These concerns will be 

discussed in Chapter 5. Before proceeding with this topic, some additional 

simulation results pertaining to the stationary time delay case are 

presented to further corroborate the performance predictions of the ZZLB. 

4.3  Simulation Results 

Simulation results for the SCC, the Wiener processor, the SCOT, the 

PHAT, and the AML techniques for TDE are compared with the ZZLB and CRLB in 

Figures 4.4 - 4.8. Results are shown for T = 2 seconds and T = 8 seconds, 
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with B = 100 Hz and D ■ 1/16 second for a sampling frequency of 

2048 Hz. Complete simulation details are given in Appendix B. For the 

signal and noise spectra used in this simulation, see (3-5), similar 

results are obtained for each of the processors, and close agreement 

between the ZZLB and experimental results is observed. However, note that 

above threshold SNR, the experimental variances for the SCOT, the PHAT, and 

the AML techniques actually fall below the CRLB. 

This phenomena can be explained in terms of an effective bandwidth, 

B , as follows. The CRLB and ZZLB were computed for B = 100 Hz. As 

discussed in Appendix B, the signal and noise sequences were obtained by 

processing white noise sequences through a low pass Butterworth filter, 

which had a cut-off frequency of 100 Hz. Although a high order filter was 

used, the signal and noise spectra are not ideal and contain some power at 

frequencies above 100 Hz. Since the signal and noise spectra have the same 

shape, the SNR, or equivalently, the MSC will remain approximately constant 

in some small interval beyond B Hz, say B <  f £ B  until the signal 

power is diminished sufficiently so that the SNR is effectively zero. 

The phase weighting functions, W,(f)a for the five processors 

considered here are shown in Figure 4.9. While the SCC and the MSC 

weighting functions go to zero above 100 Hz, the SCOT, the PHAT and the AML 

weighting functions do not fall to zero until f > 130 Hz. The latter three 

methods have an effective bandwidth of B = 130 Hz compared to 

B = 100 Hz. Since the SNR is approximately constant, the phase (time 

delay) information in this extended bandwidth is of the same quality as in 

the nominal bandwidth. From (3-9), it is easily shown that increasing the 

69 



-1 r- 

Q 
b 
O 
O 

-3  - 

-20 

-1 r- 

Q 
b 
o 
o 

-3  - 

SNR (dB) 
A) T = 2 SECONDS 

-20 -10 
SNR (dB) 

B) T = 8 SECONDS 

Figure 4.4 Comparison of SCC Results and ZZLB 

70 



-1 r 

o 
b 
O 
o 

-3   - 

20 

-1 I- 

Q 
b 
O 
o 

3  - 

-10 
SNR(dB) 

A) T = 2 SECONDS 

-20 
SNR (dB) 

B) T = 8 SECONDS 

Figure 4.5 Comparison of Wiener Processor Results and ZZLB 

71 



1 r 

Q 
b 
O 
O 

3  - 

''''' I l__J l__l L__J ''''''' 

-20 -10 0 
SNR (dB) 

A) T = 2 SECONDS 

1 i- 

O 

3 - 

20 -10 
SNR (dB) 

B) T = 8 SECONDS 

Figure 4.6 Comparison of SCOT Results and ZZLB 

72 



-1 r- 

Q 
b 
o 
o 

-3  - 

-20 
-L 1 I   . I I I I I I 

-10 0 
SNR (dB) 

A) T = 2 SECONDS 

SNR (dB) 
B) T = 8 SECONDS 

Figure 4.7 Comparison of PHAT Results and ZZLB 

73 



SNR (dB) 

A) T = 2 SECONDS 

-20 -10 
SNR (dB) 

B) T = 8 SECONDS 

Figure 4.8 Comparison of AML Results and ZZLB 

74 



bandwidth by a factor of 1.3 has the effect of subtracting .17 from log 

°CRLB' Reducing the bound by this amount in Figures 4.6 - 4.8, 

reconciles the theoretical and experimental results above the threshold 

SNR. Also note that the threshold SNR will be slightly reduced due to the 

increase in the effective bandwidth; however, below the threshold SNR, this 

increase in bandwidth will have little effect on the ZZLB. This phenomena 

is an artifact of the technique used to generate the signal and noise 

sequences and does not have great practical significance. However, it does 

illustrate the whitening effect of the SCOT and the PHAT techniques, and 

that the AML method weights the phase according to the MSC, while the SCC 

and WP methods weight the phase relative to the magnitude of the cross 

power spectrum (i.e., the signal power), refer to Table 2.1. 
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CHAPTER 5 

ESTIMATION OF A TIME-VARYING TIME DELAY 

It has been shown that significant performance gains are realized at 

low SNR by increasing the coherent processing time. For a constant or 

fixed time delay, increasing the coherent processing time requires little 

or no modification of the GCC processor structure. However, when the time 

delay varies with time, the received signals must be pre-processed to 

compensate for the changing time delay to avoid degradation in performance. 

The degree of degradation is dependent upon the amount of variation in the 

time delay, but even small rates of change in the delay can cause a 

significant decrease in performance [46, 47]. In this chapter, a simple 

model for a time-varying time delay is considered. Based on this model, 

the required changes in the GCC structure to implement an ML processor are 

discussed. A simplified compensation scheme is introduced and preliminary 

simulation results are presented to demonstrate the effectiveness of the 

compensation technique. 

5.1  Time-Varying Time Delay Mode.l. 

Consider the following modification of the model of (2-1), 

r^t) = s'^t) + nx(t) (5-la) 

r2(t) = aS'(62t+D)) + r»2(t), 0<t<T (5-lb) 

where r^(t) and ^(t) represent the signals received at two spatially 

separated sensors, s'(t) is the source signal, n^(t) and n2(t) are 
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additive noises, o is an attenuation parameter and D is the time delay of 

interest. The parameters 6-, and Bp account for the time compressions 

in the source signal at the two sensors due to relative motion between the 

source and sensors. If the source is moving toward sensor 1 with a 

relative speed of v-^, then ßi = 1 + Vj/c, where c is the propagation 

speed of the signal. For an acoustic signal in the ocean, c>>v->, and 

8]_, &2 ~  1- It is assumed that B^ and ß2 remain constant over the 

observation interval T. Now let s(t) = s'^t) then (5-1) can be written 

as 

rx(t) = s(t) + n:(t) (5-2a) 

r2(t) = os(B(t+D)) + n2(t) (5-2b) 

where ß ■ 62/6-^ is the relative time compression. There are now two 

parameters to be estimated, the time delay, D, and the relative time 

compression, ß. It is again assumed that s(t), n,(t), and n?(t) are 

sample functions from uncorrelated, zero mean, Gaussian random processes. 

Note that (5-2b) can be written as 

where 

and 

r2(t) = s(t + d(t)) + n2(t) (5-3a) 

d(t) = d't + dQ (5-3b) 

d' = (ß-1) , dQ = ß D . (5-3c) 

In (5-3), d' represents the delay rate and dQ represents the initial 

delay. In general, the time-varying time delay can be expressed as 
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d(t) = dQ + d't + d"t
2 + d"'t3 + .. , (5-4) 

where d  d1, d" ... are constants. The model considered here assumes 

that higher order terms, such as the delay acceleration (d"), are 

negligible. This model is adequate for many applications, but is not 

suitable for situations where the higher order terms cannot be ignored. 

5.2  The Maximum Likelihood Estimate 

The cross correlation function between r,(t) and r?(t) of (5-1) 

is given by 

R r (t+T, t) = oR..((l - 8)t + T - BO) (5-5a) 

= <*RSS(T - d't - dQ) (5-5b) 

While r^(t) and r^(t) are individually wide-sense stationary, they are no 

longer jointly wide-sense stationary, (i.e., R   (t+x,t) ^ R   (T) for 
lr2 lr2 

te[0, T]). The processes are only jointly stationary when ß = 1, that is 

ß, = ßp« However, the maximum likelihood estimator for the dynamic case 

of (5-2) can be obtained following a procedure similar to that used for the 

stationary case. The derivation of the ML estimator for ß and D has been 

carried out by Knapp and Carter in [46] and is outlined in Appendix F for 

convenience. For cases of practical interest, the signal and noise spectra 

must be estimated and approximate ML estimates of ß and D are obtained by 

maximizing the function J with respect to b and T, where 
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J(b,x) « f\{f) R^(bf )ej2irfbT W(f)df, (5-6a) 

cr r (f) 
W(f) = 

G        (f) 
rlr3 

(1 - C        (f))    , 
r13 

(5-6b) 

and 

r3(t) = r2(t/b)/»s/b (5-6c) 

The values of b and x which maximize J are the ML estimates of ß and D, 

respectively. In (5-6a), Rn-(f) denotes the Fourier Transform of r^t), 

and in (5-6c), r3(t) represents a time scaled version of ^(t), where 

the time scaling counteracts the effects of the relative time compression. 

Note that 

R3(f) = *Tb  R2(bf) (5-7a) 

and  (5-4a)  can be written as 

J(b,x)  =    A^f)  Rj(f)  ej2irfbx W(f)df    . (5-7b) 
— 00 

The ML estimator can be implemented as illustrated in Figure 5.1. A 

value of b is selected, ^(t) is time scaled to obtain r-j(t) corresponding 

to b, the FT of r^(t) and r3(t) is computed and W(f) is estimated, then 

J(b,x) in (5-7b) is computed. The value of T which maximizes J is the best 

estimate of D for the b selected. This process is repeated varying the value 

of b to generate an ambiguity surface for J(b,x) in b and T. The values of b 

and x corresponding to the global peak of the ambiguity surface are the ML 

estimates of ß and D. In practice, knowledge of the physical problem is used 
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to determine a priori limits for B, and the number of compensations (trial 

b values) is chosen to provide the required resolution for ß over this 

range. The ML estimator is computationally intensive, requiring r^(t) 

and W(f) to be recomputed for each trial value of b. Then, the function 

J(b,x) must be computed for each b value and this set of functions must be 

searched to find the global peak. Additionally it is not immediately clear 

how to obtain r3(t) from r2(t). Conceptually, if r2(t) is recorded 

on analog tape, ^(t) can be obtained using a variable sampling rate. 

However, very fine adjustments of the nominal sampling rate are necessary 

and there are obvious synchronization problems. In many cases, only a 

sampled version, r2(k), of r2(t) will be available, and a high resolution 

interpolation process will be required to obtain r3(k) = r?(k/b) 

from r2(k). 

5.3  A Simplified Compensation Scheme 

As discussed in Appendix B, a common technique for implementing 

the GCC processor is to segment the T second data record into M 

subintervals. It is often advantageous to use overlapping segments 

[48]; however, disjoint segments are assumed here to simplify the 

following discussion. The fast Fourier transform of each segment is 

computed and the pertinent power spectra are estimated for each 

segment. These M spectral estimates are then averaged in such a way 

that the signal components will sum coherently to obtain a final 

estimate of the cross power spectrum and the GCC weighting function. 

The inverse FFT of the product of these estimates yields the estimate of 

the GCC function. 
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For the stationary time delay case (s = 1), the M spectral estimates 

can simply be summed, and then divided by M to obtain the final spectral 

estimate. When ß +  1, the received signals must be pre-processed to 

compensate for the relative time compression, or signal coherence will not 

be preserved when the spectral estimates are summed. The compensation 

method described here compensates for the relative time compression in the 

frequency domain and avoids the need to re-process r~(t) to obtain its 

time scaled version, r3(t), for each hypothesized value of 8. This 

greatly reduces the computational load. 

Consider the expression for r~(t) given in (5-3) 

r2(t) = s(t + d't + dQ) + n2(t), 0<UT. (5-8) 

Now partition T into M disjoint segments of length T/M. Define the kth 

interval as 

Tk = t  (k-l)T/M < t < kT/Mf (5-9a) 

and denote the midpoint of this interval as 

tk = (k-l/2)T/M. (5-9b) 

Then the time delay at t = tk is given by dk + d0, where dk = d'tk. 

The key step in the development of this compensation technique is to assume 

that the time-varying time delay in the interval Tk can be approximated by 

the value of the delay at the midpoint of the interval, that is 
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d,t +do=dk+do    .    * GV <5-10) 

With this approximation, the signal model  becomes 

r:(t) = s(t) + ni(t) (5-lla) 

r2(t) = a s(t + dk + dQ) + n2(t) (5-llb) 

for t e Tk, k=l, ..., M. Thus, r-^(t) and r2(t) are again jointly 

stationary over each interval TV, and the short term cross correlation 

function for this interval is given by 

V2<
T)-°Rss<T-dk-do>- (5"12) 

Denoting the Fourier transform for r^ (t), t e T. , as R!-(f), where 

i=l, 2; the cross power spectrum for the kth data segment can be estimated as 

GJ r (f) = *\(f)  Ro(f)* rlr2     l £ 

= a G (f) e"j2lTf(dk+do) . (5-13) s s- ■ 

The cross power spectrum for the kth interval undergoes a phase rotation 

proportional to d. . Compensating for this phase rotation, and then 

averaging the short term spectral estimates yields the following estimate 

of the cross power spectrum, 

Sr r (f) -jjr V ^ r (f) ej2,rfdk (5-14a) 
rlr2    M fc(   rlr2 

- a Gss(f) e~
J'2irfdo   . (5-14b) 
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Multiplying (5-14) by the appropriate weighting function and computing the 

IFT of the product results in an estimate of the GCC function. In 

practice, d, , or equivalently, d' =6-1 is not known and it is 

necessary to compute (5-14) for several hypothesized values of d", say 

T'-| , 1 = 1, 2, ..., N, then 

v2
(f• T'' ■ * fc v2

(f) e32*fT'tk'   (5~151 

Computing the IFT of (5-15) for 1 = 1, ..., N results in an ambiguity 

surface which is a function of the hypothesized values for d' and d (or 

a and D). The position of the peak on this surface corresponds to the 

estimates for d' and d   This technique is illustrated in Figure 5.2. 

5.4  Simulation Results 

This compensation technique was implemented and preliminary 

simulation results comparing the SCC and SCOT methods have been obtained. 

Simulation details and a program listing is given in Appendix G. Briefly, 

the model in (5-2) and (5-3) was simulated for an assumed sampling 

frequency of 2048 Hz, T = 4 seconds = 8192 samples, and M1 = 33 segments 

(50% overlap was used). Each segment was then 1/4 second or 512 samples 

long. The initial delay, d  was set to zero at the start of the 

simulation and the delay rate, d', was set at 2.5 x 10  samples/sampling 

interval. When the total delay became greater than 15 samples, the delay 

rate was set to -2.5 x 10" samples/sampling interval until the total 

delay decreased below -15 samples and the sign of d' was again changed and 

so on. Hypothesized delay rates, t1,, of 0, +2.5 x 10 , and +5 x 10~4 
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samples/sampling interval were used. The SNR was -3 dB. The simulation 

results for the SCOT and SCC techniques are displayed in Figures 5.3 and 

5.4, respectively. In both cases, Figure (a) shows the estimated delay 

values (circles connected by dashed line) and the true delay values (solid 

line) as a function of time, and similarly, Figure (b) shows the estimated 

delay rate (circles) and the true delay rate (solid line) as a function of 

time. Both methods provided good estimates of the time delay with the SCOT 

predicting the delay value to within a fraction of a sample in every 

trial. The SCOT method did a much better job of estimating the delay rate 

than the SCC method. This is probably due to the narrower peak of the SCOT 

function compared to the SCC function, however, this effect has not been 

investigated thoroughly. Also note that in this preliminary simulation, no 

interpolation was performed to obtain the estimates of the delay and delay 

rate. The values of delay and delay rate corresponding to the global peak 

of the five discrete GCC functions obtained from the processor were used as 

the estimates. 
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CHAPTER 6 

SUMMARY AND RECOMMENDATIONS 

This work has presented a detailed study of time delay estimator 

performance to obtain a better understanding of the fundamental limitations 

in the time delay estimation problem. To this end, an investigation of the 

behavior of the Cramer-Rao lower bound (CRLB) and the recently proposed 

correlator performance estimate (CPE) and Ziv-Zakai lower bound (ZZLB) was 

conducted. Derivations of these three performance estimates were outlined 

and expressions for the variance of the time delay estimate for specific 

signal and noise power spectra were obtained. 

It was observed that, although the ML estimator is asymptotically 

efficient in attaining CRLB performance, actual performance can be much 

worse than that predicted by the CRLB for a given SNR and observation 

time. The CPE and the ZZLB were seen to be characterized by a threshold 

SNR. Above the threshold SNR, the CPE and the ZZLB coincide with the 

CRLB. Below the threshold, large estimation errors or anomalous estimates 

become dominant and the performance predicted by the CPE and the ZZLB 

degrades rapidly relative to the CRLB. As SNR goes to zero, the CPE and 

the ZZLB are further characterized by a prior information limit. That is, 

the predicted variance approaches a constant value which is a function of 

the maximum possible delay value. The threshold SNR was shown to be 

approximately inversely proportional to the square root of the observation 

(coherent processing) time. Simulation results were found to be in good 

agreement with the theoretical predictions. 
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This threshold effect was found to have important implications 

related to coherent versus incoherent processing considerations. A simple 

incoherent processor was considered which divides the T second observation 

interval into N sections, each of lenqth T/N seconds. Each T/N second 

section is coherently processed separately to obtain N time delay estimates 

and finally the N estimates are averaged to yield a single estimate at the 

end of the observation interval. Compared to a coherent processor, which 

processes the entire T second observation interval coherently, the 

incoherent processor suffers a loss of 5 log N dB in the threshold SNR, 

that is, SNRC0H (dB) = SNRINCQH (dB) - 5 log N. For example, if the 

incoherent processor divides 100 seconds of data into 100, 1 second 

sections, the coherent processor maintains CRLB performance for - 10 dB 

below the threshold SNR for the incoherent processor. Thus, significant 

performance gains can be obtained by increasing the coherent processing 

time. 

However, increasing the coherent processing time requires a 

significantly more complex structure for time delay estimators, in the case 

of a time-varying time delay. The ML estimator for the time-varying delay 

case was seen to require that the received signals be pre-processed to 

compensate for the relative time compression between the two signals. In 

general, the required pre-processing is difficult to achieve from an 

implementation viewpoint, in addition to being computationally intensive. 

Therefore, a simplified compensation scheme was proposed which essentially 

computes short-term correlation functions so that the time delay can be 

considered constant over the correlation interval. The short-term 

correlation functions are then combined coherently to achieve a longer 

coherent processing time. Time domain (actually, time delay domain) 
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compensation techniques which coherently sum the short-term correlation 

functions directly are discussed in [49,50]. The method described in this 

work is implemented in the frequency domain which is attractive in that it 

is easily incorporated into the structure of the GCC processor. 

Preliminary simulation results demonstrate that this compensation method is 

effective and allows the delay and delay rate to be accurately estimated. 

However, the method has only been tested for a limited set of conditions 

and further testing is required. 

Future work based on this dissertation could take many directions. 

Some of these include: 

1) Extension of the time delay model in (2-1) to account for 

multiple sources or multi-path interference and the development 

of the corresponding expression for the ZZLB. (The CRLB for the 

multi-sensor, multi-target problem is developed by Ng in [51].) 

2) More extensive testing of the proposed compensation technique for 

the time-varying time delay model and comparison with time domain 

implementations. 

3) Consideration of the relative importance of the fundamental 

limitations on time delay estimator performance discussed here 

(e.g., due to SNR and observation time) with the limitations 

imposed by uncertainty in sensor position. 

These and other problems of equal importance provide the basis for a qreat 

deal of exciting research yet to be done in time delay estimation. 
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APPENDIX A 

THE ML ESTIMATOR-FIXED TIME DELAY 

The ML estimator for the case of a stationary or fixed time delay is 

derived by Knapp and Carter in [6]. The derivation is summarized in this 

appendix for convenience. The mathematical model is that of Section 2.1 

and the same assumptions are made. 

Suppose an observation vector, R,  which is dependent upon the 

parameter to be estimated, say T, is given. For the TDE problem, the 

parameter of interest is the true time delay D. The ML estimate, DM, , is 

the value of t which is most likely to have resulted in the occurrence of 

the observed vector, R_. More precisely, the ML estimate is given by 

DML = To such that 

p{R | x0) > p(R | T), for all allowable t, (A-l) 

where p(R  T) is the conditional probability density function of R  qiven T. 

For purposes of analysis, consider periodic extensions of the 

received signals, r^(t) and r2(t), with period T, where T also 

represents the observation time. Then, for any integer m 

r^t + mT) = r.j(t) , 0 < t < T, i = 1,2.       (A-2) 

The Fourier series coefficients of the received signals can be computed as 
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R.(k) =|/r.(t) e'^V dt , i = 1, 2       (A-3a) 

where 

wQ = 2ir/T. (A-3b) 

The time waveforms can be reconstructed from the Fourier coefficients using 

the relationship 

00 

^U) =  Z^ R^k) eJkwot (A-4a) 
k=-oo 

= r^t)  , 0 < t < T . (A-4b) 

In practice, the received signals are band limited so the number of 

non-zero Fourier coefficients will be finite, say -N <_ k <^ N. Thus, as 

seen in (A-4)„ r.(t) is characterized by the set of Fourier series 

coefficients JR^k), -N <_ k < N! . 

Defining the vector R(k) = [R^k), R2(k)]', where ' denotes 

transpose, the ML estimate of the time delay is obtained by maximizing the 

joint density function, p(R(-N), Rj-N+1), ..., R(N) | T), with respect to 

the time delay variable T. Observe that R.(k) is a linear transformati 

of r.(t), which is Gaussian, so R^(k) is also Gaussian for i = 1,2 and 

-N <_ k <_ N. Further, it can be shown that [36, p. 461] 

on 

T \rtotJ    • k " ] 

E[R-,(k) RZ(1)] = \ (AS) 
0        , k 4 1 . 

.% 
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It is also easily seen that E[R^(k)] = 0 , since r^(t) is zero mean. 

Therefore, the vectors, R(k), -N <_ k <_ N, are uncorrelated, zero mean, 

Gaussian random vectors. Let R  = (Rj-N), ..., j*(N)), then the joint 

density function can be written as 

N 

p(R | T) -  "I p(R(k) | T) 
k=-N 

(A-6a) 

where 

p(R(k) I T) = (2* £k|x 
ll2)-1  exp \ R*'(k)E^,1

TR(k) (A-6b) 

In (A-6b),2Jj.I denotes the covariance matrix of the vector Rjk) given x, 

and is defined as 

£,  = E [R(k) R*'(k)|T]  K|T       —    — 
(A-7a) 

1 
T 

Vi(kw0,   ,,,*,, 

G   (kw )   G   (kw ) 
^■^2       °     r2r2 

(A-7b) 

= JQ (kwQ) (A-7c) 

where Q is defined to be a spectral density matrix. The power spectra in 

(A-7b) are assumed known. The cross power spectra are dependent on the 

hypothesized time delay t, hence,^!  is a function of x. The 

determinant of£li T, dropping the frequency argument of the power 

spectra, is 
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Ä-k . (G  + G   )(a G  + G   ) v ss   "i^i   ss   n^n- 

-jkw T     jkw T 
- (aGcc e   ° )(aGcc e  ° ) 

SS SS 
(A-8) 

which is seen to be independent of the hypothesized delay T. Substituting 

(A-6b) into (A-6a) yields 

-1 
p(R I T) . c exp (-jj- J1) (A-8a) 

where 

ji = Yl ^*,(k)5;iT -(k) 

and 

N 

I 
k=-N 

N 

(A-8b) 

c = 

k=-N 

-1 

t^h!1"»   • (A-8c) 

Since c does not depend on T, maximizing p(Rjx) with respect to T is 

equivalent to minimizing J,, since E[j\] > 0. 

At this point, an approximation is made based on the relationship 

between the Fourier series and the Fourier transform (FT). For large T, it 

can be shown that [52, pp. 23-25]. 

Ji = f  R*'(f) Q_1(f) £(f) df (A-9) 
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where R(f) - [R,(f), R2(f)]' and where R^f) represents the FT of 

r,(t). Evaluating j}~ (f) from (A-7) and substituting into (A-9), J, 

can be written as 

where 

J1 = J2 - J3 (A-lOa) 

J2 = 

" R1(f) 
2 

R2(f) 
2 " 

. Vl (f) G r2r2 
{*) • l~rc 

rlr2 
rn -df  , !A-10b) 

G    (f) e^2*^1 

rirr    r2r2 rlr2 

and recall 

V2
(f) ■ i 

G        (f) 
rlr2 (aGss(f))' 

rlrl 
(f) ci rn r2r2 rri       r2r2 

'A-10d' 

Now J2 does not depend on T, therefore, maximizing J-, with respect to t 

is equivalent to minimizing J,, and yields the ML estimate. The 

information about the true delay, D, is contained in Ri(f) and R2(f) 

which are obtained from the received signals, r,(t) and r?(t), over the 

observation interval T. The other terms in (A-lOc) depend on the known 

power spectra with the hypothesized delay t appearing in the exponential 

term. The product Rj(f) R2(f) can be viewed as T times an estimate 

of the cross power spectrum, G   (f). 
rlr2 

Re-writing J, in terms of G   (f) and C   (f) and noting that 
J rlr2      rl 2 

multiplying J, by a positive constant does not affect the location of the 

peak, the ML estimate of the time delay is the value of T at which 
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Gr  (f) 
rlr2 ,ML , , r      ' 1' 2 

W ° J   fG IT 
— OO XL. 

cr r (f) 
rlr2 

1 - cr r (f) 
rlr2 

ej2irfx df (A-ll) 

attains its peak value. From (A-ll), it is seen that the ML weighting 

function is indeed given by (2-19), 

W(f) = c: (f) 
rlr2 

(f) 
rlr2 

T^~C—m 
rlr2 

(A-12) 
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APPENDIX B 

SIMULATION DETAILS-FIXED TIME DELAY 

A computer simulation was conducted to corroborate the theoretical 

TDE performance predictions and to compare the performance of several of 

the GCC processors. The simulation results are presented in Section 4.3. 

The simulation was implemented on a VAX 11-750. 

The signal model of (2-1) was simulated as follows. Two independent, 

Gaussian, pseudo-random sequences having zero mean and unit variance were 

generated to represent the additive noise sequences, n,(t) and n«(t). 

A third independent Gaussian sequence, again with zero mean and unit 

variance, was generated to represent the broadband source signal, s(t). 

The required Gaussian random sequences were obtained by first generating 

random sequences which were uniformly distributed on the interval (0, 1) 

using the technique in [53, p. S—11]. These uniformly distributed random 

sequences were then transformed to Gaussian random variables using the 

method in [54, p. 953]. Specifically, if U^ and U2 represent a pair of 

random variables uniformly distributed on (0, 1), the transformation 

Xj = (-2 In Ux)
1/2 cos(21rU2) (B-la) 

X2 = (-2 In Ux)
1/2 sin(2TrU2) (B-lb) 

yield a pair (X,, X2) of independent Gaussian random variables with 

zero mean and unit variance. 
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The three Gaussian random sequences were then processed through a 

12th order (six cascaded 2nd order sections) low-pass Butterworth filter 

with a cut-off frequency of 100 Hz, relative to an assumed sampling 

frequency of 2048 Hz. The noise sequences were scaled to obtain the 

desired SNR. To obtain r,(t), the signal sequence was simply added to 

one of the noise sequences, and to obtain r„(t), the signal sequence was 

delayed (D = 4 samples) and added to the second noise sequence. 

The GCC function of the sequences, r.(t) and r„(t) was computed 

following the procedure given in [53, pp. 2.3-1 - 2.3-18]. The sequences 

were processed using 512 point data segments and 50% overlap. Thus, each 

data segment represents 1/4 second of data. To obtain a 2 second 

observation time, 17 overlapped segments must be processed. Similarly, an 

8 second observation time requires 65 overlapped segments. Each 512 point 

segment was weighted with a Hamming window and then zero padded to 1024 

points. The Fourier transform of each 1024 point segment, for both r,(t) 

and r„(t), was computed using a fast Fourier transform (FFT). The 

resulting Fourier coefficients were used to compute auto and cross-power 

spectral estimates for each segment, and these estimates were then averaged 

to obtain the final estimates of the spectra for the observation interval. 

Using the spectral estimates, the GCC weighting functions were 

computed and multiplied by the estimate of the cross power spectrum. The 

inverse FFT of the result was computed to yield an estimate of the GCC 

functions. These functions were searched for their peak values for delay 

values over the range +128 samples. Thus, the value of D in seconds is 

128/2048 = 1/16 second. The time delay estimate is given by the delay 
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value corresponding to the peak of the GCC function in the search 

interval. The simulation was conducted for two observation times, 2 and 8 

seconds, and over a range of SNR values from 0 to -15 dB. A total of 2000 

trials was conducted at each SNR to obtain the experimental time delay 

variances, which are displayed in Figures 4.4-4.8. 
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APPENDIX C 

NUMERICAL EVALUATION OF P[A] 

In this appendix, techniques for numerically evaluating the 

expression for P[A] in (3-16a) are discussed. Recall 

P[A] =  1 

CO 

- f — J    N/27 
r(x-x)V2 

XX 

/ 
i- e-* /2 dy 

•JTii 

M-l 

dx,     (C-l) 

where x = f(B, T, SNR) and x = g(SNR) are given in (3-16). This equation 

can be re-written in terms of the Q function to give 

00 

P[A]=1./*^e-(x-x)2/2 [Q(_XX)]M-1 dx (C-2a) 

where 

Q(x) = 
1 

*$n  x 
/e"^2dy , (C-2b) 

and note that Q(-») = 1, Q(0) = 1/2,  and Q(-x) = 1 - Q(x). 

Consider the integral  on the right hand side of  (C-2a).    Making the 

change of variable u =  (x-x)/  2 yields 

2 
1 . p[A] .   J-   /Vu    Q(-x(2u +7)) -^M-l 

du, (C-3) 

This expression for 1 - P[A] can be approximated using the 

Gauss-Hermite Quadrature formula [54, p. 890, eq. 25.4.46]. Consider a 

function G(x), then 
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CO 

/ 
e x G(x) dx = > W . G(x •) . (C-4) 

/ J   m,i v m,i ' 

That is, the integral can be approximated by a weighted sum of the function 

G(x) evaluated for specific arguments. In (C-4), x . represents the 1th 

zero of the mth order Hermite polynomial, and Wm . is the weiqht 
m, i a 

corresponding to xm . and is a function of the mth order Hermite 
m,i 

polynomial. If the zeroes are arranged in ascending order and the weights 

are arranged in corresponding order, then the following relations hold, 

xm,i ■- xm,m+l-i • 1-1.2....." (C-5a) 

and 

Wm,i - Vm-l-i ' (C-5b) 

The zeroes and weights are available in tables, for example see [55, Table 

5]. Note that most tables make use of the property of (C-5) and only list 

the positive zeroes and their corresponding weights. 

Applying the approximation of (C-4) to (C-3) yields 

I  §V !" ?w't ^"m-i CQ<"iN5 V( +7))]""1 "       (c"6) 

At the end of this appendix, a listing is given of the FORTRAN 

program BOUND.FOR, which computes the CRLB, the CPE, and the ZZLB as 

functions of SNR. Additionally, listings of the subroutines PROB.FOR and Q* 

FOR, which evaluate P[A] and the Q function, respectively, are included. 

The values of P[A] which are of greatest interest are of the order 10 

or smaller. Thus, the approximation in (C-6) must be evaluated to 5 or 
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more significant digits. This requires a large value for m (m = 60 in the 

subroutine) and the use of double precision calculations. An alternative 

method of evaluating P[A] is proposed by Nuttall in [45], which reduces the 

number of significant digits required for the calculation. These two 

techniques have been found to yield very similar values for P[A]. 
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Q*********************************************************************** 

C 
C      CRLB - CPE - ZZLB ROUTINE 
C 
C      VAX-11 FORTRAN SOURCE FILENAME:       BOUND.FOR 
C 
C      DEPARTMENT OF ELECTRICAL ENGINEERING   KANSAS STATE UNIVERSITY 
C 
C      REVISION      DATE PROGRAMMER(S) 

C      00.0 JUNE 1983 K SCARBROUGH 
C      01.0 JULY 1983 K SCARBROUGH 
C*********************************************************************** 
c 
C      PURPOSE 
C 
C This program computes the Cramer-Rao lower bound (CRLB), 
C lanniello's estimate of Correlator Performance (CPE), 
C and the Ziv-Zakai lower bound (ZZLB), for the case of 
C low passed gaussian signal &  noise sequences. 
C 
C      ROUTINE(S) ACCESSED OR CALLED BY THIS ROUTINE 
C 
C PROB, Q, HEADER, SG0PEN, SGTRAN 
C 
C*********************************************************************** 
c 
C      INPUT PARAMETERS 
C 
C SF SAMPLING FREQUENCY 
C FREQ = CUTOFF FREQUENCY 
C TIME = OBSERVATION TIME 
C WIDTH = CORRELATION WINDOW WIDTH 
C SNR1 = MIN SNR VALUE(DB) 
C SNR2 = MAX SNR VALUE(DB) 
C SSTEP = SNR STEP SIZE 
C EPS = EPSILON VALUE 
C PSTEP = STEP SIZE FOR PRINTING CRB/CPE VALUES 
C 
0*******************************-*-*************************************** 
C 
C     NOTE : The equations for the CPE and the ZZLB assume 
C that the signal has a low-passed (flat) power spectrum. 
C 
C*********************************************************************** 
c 

REAL CRB(8002), CPE(8002), ZZB(8002), SNRSAV(4001), PASAV(4001) 
REAL BW, CPELIM, CRBVAL, ZZBLIM, FREQ, EPS 
REAL ETA2, ETAZ, ETAZ2, PA, PE, Q_ETAZ 
REAL SNR, SNR1, SNR2, SSTEP, SNRDB, SNRFCT, SQSNR1 
REAL TIME, ZBW, ZBWRD, ZZ1, ZZ2 
INTEGER MEXP, NPT, NPT2, PSTEP, WIDTH, UNITP 
LOGICAL EQUAL 1, EQUAL2 
CHARACTER*40 CRBNAM, CPENAM, ZZBNAM 
DATA  PI /3.14592654/ 

C 
C************************************************************* 
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c 
c 
c 

INITIALIZE CONSTANTS 

NPT = 0 
EQUAU = .FALSE. 
EQUAL2 = .FALSE. 
TWOPI = 2. * PI 
SQTPI = SQRT(TWOPI) 
UNITP = 99 

C************************************************************* 

c 
C FORMAT STATEMENTS 
C 

1 
3 
5 
7 
9 

11 

FORMAT(A) 
FORMAT( 
FORMAT( 
FORMAT( 
FORMAT( 
FORMATC1 

,A,F10.2,A) 
,A,110,A) 
,A,A) 
,/,4X,»SNR(dB)',9X/CRLB\12X,'CPE\11X, »ZZLB»,/) 
,//,4X,'SNR(dB)»,6X,»PR(anomaly)«,4X,'ZZB Term 1», 

5X,'ZZB Term 2',/) 

Q************************************************************* 
c 
C ACCEPT INPUT PARAMETERS 
C 

TYPE 1, 'SSAMPLING FREOUENCY 
READ *, FS 
TYPE 1, 'SOBSERVATION TIME(sec) 

TIME 
•$CORR WINDOW(samples) 
WIDTH 
'SCUTOFF FREQ 
FREO 
»$MIN SNR VALUE(dB) 
SNR1 
'$MAX SNR VALUE(dB) 
SNR2 
>$SNR STEPSIZE(dB) 
SSTEP 
•SEPSILON VALUE 
EPS 
'SPRINT STEPS IZE 
PSTEP 

C************************************************************* 

c 
C COMPUTE PROGRAM VARIBLES 
C 

BW = FREQ 
ZBW = BW * 2. 
DO = WIDTH / FS 
CPELIM = (D0**2) / 12. 
ZZBLIM = 2. * CPELIM 
MEXP = IFIX(2. * DO * BW) 
CRBVAL = 3.0 / (8.0 * (Pl**2) * (BW**3) »TIME) 

READ # 
TYPE 1 , 
READ * 
TYPE ]', 

READ * 
TYPE 1, 
READ * 
TYPE 1, 
READ * 
TYPE 1, 
READ * 
TYPE \\ 
READ * 
TYPE l' 
READ * 
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£****#*#*#**************#****#***********#******************** 

C 
C COMPUTE CRLB, CPE & ZZLB AS FUNCTIONS OF SNR 
C 

DO SNRDB = SNR1, SNR2, SSTEP 
NPT = NPT + 1 
JPT = 2 * NPT - 1 
IPT = 2 * NPT 

C 
SNRSAV(NPT) = SNRDB 
SNR = 10.**(SNRDB / 10) 
SNRFCT = (SNR**2) / (1. +2. * SNR) 
SQSNR1 = S0RT(SNRFCT + 1.) 

C 
C COMPUTE CRLB 
C 

CRBTMP = CRBVAL / SNRFCT 
C 
C COMPUTE CPE 
C 

PA = PROB(SNR,BW,TIME,MEXP) 
PASAV(NPT) = PA 
CPETMP = PA * CPELIM + (1. -PA) * CRBTMP 

C 
C COMPUTE ZZLB 
C 

ZTMP1 = L0G((1. + SQSNR1) / 2.) 
ZTMP2 = (SQSNR1 - 1.) / (2. * SQSNR1) 
ZTMP3 = EXPC-ZBW * TIME * (ZTMP1 - ZTMP2)) 

C 
ETAZ = SORT(ZBW * TIME * (SQSNR1 - 1.) / S0SNR1) 
ETAZ2 = ETAZ**2 
0_ETAZ = Q(ETAZ) 

C 
ZTMPA =   (ETAZ2 -  1)  * Q_ETAZ 
ZTMPB  ■  ETAZ  * EXP(-ETAZ2 /  2.)   /  SOTPI 
ZTMPC =0.50 

C 
PE  = Q_ETAZ  * ZTMP3 
ZZ1   =  PE  * ZZBLIM 
ZZ2 = 2 * CRBTMP * (ZTMPA - ZTMPB + ZTMPC) 

C 
ZZBTMP = ZZ1 + ZZ2 

C 
C COMPUTE LOG10 OF STANDARD DEVIATION OF TIME DELAY ESTIMATE 
C 

CRBTMP = LOG10(CRBTMP) / 2. 
CPETMP = LOG10CCPETMP) / 2. 
ZZBTMP = LOG10(ZZBTMP) / 2. 

C 
C DETERMINE THRESHOLD SNR VALUES 
C 

IF (.NOT.E0UAL1) THEN 
DIFF = CPETMP - CRBTMP 
IF (DIFF .LT. ABS(EPS * CRBTMP)) THEN 

EQUAL1 = .TRUE. 
INDEX1 = NPT 
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END 

IF ( 

INDEX2 = IPT 
END IF 
F 

NOT EQUAL2) THEN 
DIFF ■ ZZBTMP - CRBTMP 
IF 'DIFF .LT. ABS(EPS * CRBTMP)) 

EQUAL2 = .TRUE. 
INDEX3 = NPT 
INDEX4 = IPT 

END IF 
F 

THEN 

C 
c 
c 
c 

STORE 
(SNR 

END 

SNR VALUES & BOUND VALUES IN OUTPUT ARRAY 
VALUES NEEDED FOR XY PLOTTING) 

CRB(JPT) 
CRB(IPT) 
CPE(JPT) 
CPE(IPT) 
ZZB(JPT) 
ZZB(IPT) 

SNRSAV(NPT) 
CRBTMP 
SNRSAV(NPT) 
CPETMP 
SNRSAV(NPT) 
ZZBTMP 

END DO 

C************************************************************* 

c 
C OPEN OUTPUT FILES, OUTPUT CRLB & CPE VALUES TO DISK 
C 

NPT2 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 

= NPT * 2 
SGOPEN(1,' WR 
SGOPEN(2,'WR 
SGOPEN(3,»WR 
SGTRAN(1,'WR 
SGTRAN(2,'WR 

TE1 

TE' 
TEV 

FILE 
FILE 
FILE 

TE','REAL»,CRB,NPT2) 
TE','REAL',CPE,NPT2) 

»CRB 
'CPE 
'ZZB 

•,CRBNAM,»REAL»,NPT2) 
»,CPENAM,'REAL',NPT2) 
',ZZBNAM,»REAL',NPT2) 

SGTRAN(3,»WRITE»,'REAL',ZZB,NPT2) 

CREATE LISTING FILE: 

C************************************************************* 

c 
WRITE HEADER 
ECHO INPUT PARAMETERS 
OUTPUT CRB - CPE INTERCEPT VALUES 
OUTPUT CRB - ZZB 
OUTPUT CRB, CPE & 

INTERCEPT VALUES 
ZZB VALUES 

CALL HEADER (UNI 
WRITE(UNITP,3) 
WRITE(UNITP,3) 
WRITE(UNITP,5) 
WRITE(UNITP,5) 
WRITE(UNITP,3) 
WRITE(UNITP,3) 
WRITE(UNITP,3) 
WRITE(UNITP,3) 
WRITE(UNITP,*) 

WRITECJNITP,*) 

TP,'*** CRLB - CPE - ZZLB 
' Sampling Frequency 
• Observation Time 
• Correlation Window 
' Ind Corr Values 
' Cutoff Freq 
1 Min SNR Value 
' Max SNR Value 
' SNR Stepsize 
' EpsiIon Value 

PROGRAM ***') 
, FS  , 
, TIME , 
, WIDTH, 
, MEXP 
, FREQ , 
, SNR1 , 
, SNR2 , 
, SSTEP, 
, EPS 

Hz' 
sec' 
samp I es' 

Hz' 
dB' 
dB« 
dB' 
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WRITE(UNITP,3) 
WRITE(UNITP,*) 
WRITE(UNITP,*) 
WRITE(UNITP,*) 

WRITE(UNITP,*) 
WRITE(UNITP,3) 
WRITECUNITP,*) 
WRITE(UNITP,*) 

WRITE(UNITP,*) 
WRITE(UNITP,7) 
WRITE(UNITP,7) 
WRITE(UNITP,7) 

• Threshold SNR(dB) 
• Prob of Anomaly 
• CPE Value 
' CRLB Value 

Threshold SNR(dB) 
CPE Value 
ZZLB Value 

CRLB F iIename 
CPE FiIename 
ZZLB FiIename 

dB' », SNRSAVUNDEX1),' 
', PASAV(INDEX1) 
', CPE(INDEX2) 
'  CRB(INDEX2) 

', SNRSAV(INDEX3),' dB' 
', CPE(INDEX4) 
'  CRB(INDEX4) 

», CRBNAM 
», CPENAM 
» ZZBNAM 

WRITE(UNITP,9) 
DO I FT = 1, NPT2, PSTEP*2 

JPT = IPT + 1 
WRITE(UNITP,*) CRB(IPT), CRB(JPT), CPE(JPT), ZZB(JPT) 

END DO 

STOP 
END 
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c*********************************************************************** 
c 
C      PROBABILITY OF ANOMALY ROUTINE 
C 
C      VAX-11 FORTRAN SOURCE FILENAME:       PROB.FOR 
C 
C      DEPARTMENT OF ELECTRICAL ENGINEERING   KANSAS STATE UNIVERSITY 
C 
C      REVISION      DATE                PROGRAMMER(S) 
C              _--__— . 

C      00.0 MAY 1983 KENT SCARBROUGH 
C 
C****************************#****************************************** 
c 
C      CALLING SEQUENCE 
C 
C VALUE = PROB(SNR,BW,T,M) 
C 
C      PURPOSE 
C 
C This routine calculates the probability of anomaly 
C for band-1 imited signal and noise sequences. The 
C signal & noise are assumed to have the same ideal 
C band(low)-passed spectral characteristics. 
C 
C      ROUTINE(S) ACCESSED OR CALLED BY THIS ROUTINE 
C 
C Q 
C 
C      ARGUMENT(S) REQUIRED FROM THE CALLING ROUTINE 
C 
C SNR    Signal-to-Noise ratio 
C 
C BW    Bandwidth of signal and noise 
C 
C T     Observation time (seconds) 
C 
C M     Number of independent correlation estimates 
C 
C ARGUMENT(S)   SUPPLIED    TO    THE  CALLING ROUTINE 
C 
C NONE 
C 
C*********************************************************************** 

c 
C NOTE 1: The equation for PR(anomaly) was derived following 
C lanniello's paper in IEEE TRANS ASSP, Dec 1982. 
C 
C NOTE 2: The formula for the Gauss-Hermite Quadrature rule 
C can be found in "Handbook of Mathematical Functions" 
C by Abramowitz & Stegun, Nat'I Bureau of Standards, 1964. 
C See equation 25.4.46, page 890. 
C 
C NOTE 3: The weights and zeroes for the G-H Quad, rule were 
C taken from "Gaussian Quadrature Formulas" by Stroud 
C & Secrest, Prentice Hall, 1966. See Table 5. 
C 
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& 8 
& 7 
& 6 
& 5 
& 4 
& 3 
& 2 
& 1 

& 1 
& 0 

c*************************************************************** ******** 
c 

REAL FUNCTION PROB(SNR,BW,T,M) 
C 

DOUBLE PRECISION  WEIGHTC60), ZER0(60) 
LOGICAL FIRST/.TRUE./ 
INTEGER M, I, IWT, JWT, NWT 
REAL ALPHA, BETA, BW, P, PBAR, PTMP 
REAL SNR, T, X 

C 
DATA    SQRTP1/1.772453851/,   SQRT2/1.414213562/ 

C 
Q*********************************************************************** 
C 

DATA   (ZERO(I),1=1,30)/   10.15910924618,9.520903677013, 
,992398001405,8.520569284118,8.085188654249, 

7.675839937505,7.286276594396,6.912381532189, 
6.551259167063,6.200773557993,5.859290196394, 

.525521086139,5.198426534576,4.877150077473, 

.560973757936,4.249286435956,3.941560733926, 
,637335876171,3.336204653548,3.037803338231, 
.741803748070,2.447906902308,2.155837871230, 
,865341531233,1.576179011975,1.288124674869, 
,000963499561,0.714488781673,0.428500064221, 
.142801238703 / 

C 
Q*********************************************************************** 
C 
C NOTE: THE FIRST TWO (& LAST TWO) WEIGHTS HAVE BEEN SET TO 
C ZERO DUE TO THE DYNAMIC RANGE LIMITATIONS (E-38 to E+38) 
C OF FORTRAN 77 ON THE VAX WITHOUT THE FLOATING_G OPTION. 
C THE ACTUAL VALUE OF THE WEIGHTS SHOULD BE: 
C 
C WEIGHTd)   =   .110958724797E-44  = WEIGHT(60) 
C WEIGHTC2)   =   .243974758815E-39 = WEIGHT(59) 
C 
C 

DATA  (WEIGHTd), 1 = 1,30)   /       .000000000000E-00,. 0OOOO000OO0OE-0O, 
& .377162672712E-35,.133255961176E-31,.171557314767E-28, 
& .102940599717E-25,.334575695575E-23,.651256725750E-21, 
& .815364047302E-19,.692324790958E-17,.415244410969E-15, 
4 .181662457626E-13,.594843051606E-12,.148895734906E-10, 
& .2899359012808E-9,.4456822775226E-8,.5475554619277E-7, 
& .5433516134205E-6,.4394286936267E-5,.2918741 9041 56E-4, 
& .1602773346818E-3,.7317735569655E-3,.2791324828953E-2, 
& .8932178360308E-2,.2406127276611E-1,.5471897093218E-1, 
& .1052987636977856,.1717761569188851,.2378689049586589, 
& .2798531175228290    / 

C 
£*********************************************#************************* 

C 
SAVE SQRT2, SQRTPI, FIRST, WEIGHT, ZERO 

C 
NWT = 60 

C 
C************************************************************* 

c 
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C ON FIRST CALL TO ROUTINE, INITIALIZE SECOND HALF OF 
C WEIGHTING AND ZERO ARRAYS 
C 

IF (FIRST) THEN 
DO IWT ■ 1, NWT / 2 

JWT = NWT - IWT + 1 
WEIGHT(JWT) = WEIGHT(IWT) 
ZERO(JWT) = - ZERO(IWT) 

END DO 
END IF 

C 

c 
C COMPUTE CONSTANTS - FUNCTIONS OF SNR 
C 

ALPHA = S0RT2 * S0RT(BW * T) * SNR 
&        / SQRT( SNR**2 + (1 + SNR)**2 ) 

BETA = SQRT( 1 + (SNR**2) / (1 + SNR)**2 ) 
C 
Q#************************************************************ 

C 
C USE GAUSS-HERMITE QUADRATURE TO COMPUTE P(anomaly) 
C 

PBAR = 0.0 
DO I WT = 1, NWT 

X = BETA * (SQRT2 * ZERO(IWT) + ALPHA) 
P = 1.0 - Q(X) 
PTMP = WEIGHT(IWT) * (P**(M-1)) / SQRTPI 
PBAR = PBAR + PTMP 

' END DO 
PROB = 1.0 - PBAR 

C 
RETURN 
END 
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Q*********************************************************************** 
c 
C Q FUNCTION (UTILITY LIBRARY) 
C 
C VAX-11 FORTRAN SOURCE FILENAME: Q.FOR 
C 
C DEPARTMENT OF ELECTRICAL ENGINEERING KANSAS STATE UNIVERSITY 
C 
C REVISION      DATE PROGRAMMER(S) 
C  —      ■—-  
C 00.0 MAR 31, 1983 F W RATCLIFFE 
C 01.0 APR 08, 1983 K SCARBROUGH , 
C 
C*********************************************************************** 

c 
C      CALLING SEQUENCE 
C 
C VALUE = Q (X) 
C 
C      PURPOSE 
C 
C This routine evaluates the function Q(x), that is, 
C     the integral fr'om x to + infinity of a Gaussian distribution 
C     function for a zero mean, unit variance random variable. 
C 
C     ROUTINE(S) ACCESSED OR CALLED BY THIS ROUTINE 
C 
C NONE 
C 
C ARGUMENT(S)   REQUIRED  FROM THE  CALLING ROUTINE 
C 
C X     value at which to evaluate the error function 
C 
C ARGUMENT(S)   SUPPLIED    TO    THE  CALLING  ROUTINE 
C 
C NONE 
C 
Q*********************************************************************** 

C 
C NOTE 1: This routine uses' two different approximations 
C to compute Q(x) depending on the value of x. 
C For 0 < X < 2.326 , see Note 2. 
C For     X > 2.326 , see Note 3. 
C 
C NOTE 2: For values of X in the range 0 < X < 2.326, 
C (i.e., for .5 > Q(x) > .01 ), equation 26.2.17 
C on page 932 of reference 1 is used to evaluate Q(x). 
C 
C NOTE 3: For values of X > 2.326 (I.e., for Q(x) < .01 ) 
C equation 13 on page 641 of reference 2 is used 
C to evaluate Q(x). 
C 
C NOTE 4: These approximations insure that the error in the 
C value of Q(x) is less than 0.001 %   . 
C 
C NOTE 5: This routine works for positive and negative values 
C of X. Note that Q(-x) = 1 - Q(x). 
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c 
C REFERENCE 1:   Abramowitz and Stegun, HANDBOOK OF MATHEMATICAL 
C FUNCTIONS, National Bureau of Standards, 1964. 
C 
C REFERENCE 2:   P. 0. Borjesson, C. E. Sundberg, SIMPLE 
C APPROXIMATIONS OF THE ERROR FUNCTION Q(x) FOR 
C COMMUNICATION APPLICATIONS, IEEE Transactions 
C on Communications, March 1979, pp 639-643. 
C 
C*********************************************************************** 

C 
REAL FUNCTION Q (X) 

C 
DOUBLE PRECISION F(5), P, T, ZEXP, QTEMP, SQT2P1 
REAL A, B, X, XPOS, DEN 

C 
DATA    SQT2PI   /2.506628275/,   P /0.2316419/ 
DATA    F /0.319381530,  -.356563782,   1.781477937,  -1.821255978, 

& 1.330274429/ 
DATA    A 10.219/,   B /7.123/ 

C 
0***********#********************# 
C 
C  Initialize Variables 
C 
C 

QTEMP =0.0 
XPOS = ABS(X) 
ZEXP = EXP(-(X**2)/2.)/SQT2PI 

C 
c****************#*************#************** 
c 
C Determine range of X, and compute Q(x) 
C using the appropriate approximation 
C 
C 

IF  (XPOS.LE.2.326) THEN 
T • 1. / < 1. + P « XPOS) 
DO I = 1, 5 

QTEMP = QTEMP' + F(I) * (T**l) 
END DO 
QTEMP = QTEMP * ZEXP 

ELSE 
DEN = (1. - A) * XPOS + A * SQRT(B + XP0S**2) 
QTEMP = ZEXP / DEN 

END IF 
C 
Q#********#********#************#********** 

c 
C Check for negative values of X, and 
C adjust Q(x) If necessary 
C 
C 

IF (X.GE.O.) THEN 
Q = QTEMP 

ELSE 
Q = 1.0 - QTEMP 

114 



END   IF 

RETURN 
END 
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APPENDIX D 

DERIVATION OF EXPRESSION FOR P (T, T+A) 

The derivation of the expression for Pg(
T, T+A), equation (3-30), 

is given in [29] and is included in this appendix for completeness. Also 

considerations leading to the bound for P6(A) in (3-31) are given. 

Recall Pg(t, T+A) represents the minimum attainable probability 

of error for the binary decision problem of deciding which of the two 

hypothesized delay values, T or T+A, is correct. For large BT, 

Pe(T, T+A) can be approximated by the Chernoff formula [23, p. 125, 

eq. (484)] 

P  (-,    +A)  =iexp[l(qj  + q2„ l"/2] Q[qft VF(qJ] 

+ \ exp[l(qo)  + (1 - qQ)2  l"(q  )/2] Q[(l - qQ) v/l"(qQ)] (D-la) 

where 

1 (q)  = In   f   [p(R  |   x)]q [p(R  |   T+A)]1_q dR (D-lb) 

and where qQ is the value for which l'(q) =0 (note, T(q) = dl/dq and 

l"(q) = d2l/dq2). R^ is the observation vector made up of the Fourier 

coefficients of the received signals, r,(t) and r2(t), and p(R|x) is 

the conditional pdf of R given, as discussed in Appendix A. 
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Substituting the expressions for p(_R| T) and P(Rn+A) from (A-6) into 

(D-lb) and carrying out the integration yields 

(Q)--iz: 
k: 

q In [detEk,     ] + (1-q)  In [detEk|T+A] 

+ In [det  (qLk|T    + (1-q)    Lk |T+A  )] 

tE 

(D-2) 

As noted in (A-8), det4*|<|T is independent of x. Recall from (A-7) that 

E , 
GCc(kwn) + Gn (kwj ssv o'        nnv o' 

-jkw T 
«G (kwj e   ° 

aGss(kwo) e 
jkw0x 

SS(  0' 

o G (kw ) + G (kw ) ss  o   nnx o ■ 

(D-3a) 

thus 

^k IT 
det Ei 

a2Gss(kwo) + Gnn(kwo)   -«W^o* K    V 

-a Gss(kw0) e 
-jkw T 

Gss(kw0) «■ Gnn(kw0). 

D-3b) 

Substituting (D-3) into (D-2) and simplifying yields 

Kq) = -\  E In [1 + 4q(l-q) Y(kf0,A)]  " , (D-4) 

where y(f,A) is given in (3-30e). Then taking the first and second 

derivatives of l(q) with respect to q gives 

_ 2 (l-2q) T(kf,A) 
T(q) -- E ^  1 + 4q(l-q) Y(kf0,A) 

(D-5a) 

and 
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"(q) = 2Z 
4 y(kf0,A) 8(l-2q)2 y2(kfo,A) 

1 + 4qll-q) Tlkf0,A)  [X + 4q(l-q) y(kf0,A)]
2 

(D-5b) 

Note that 1'(q ) = 0 when qQ = 1/2. For large BT, the summations in 

(D-4) and (D-5) can be approximated as integrals using the large T 

approximation as in Appendix A. Evaluating l(q) and l"(q) at qQ = 1/2 

yields 
CO 

1(1/2) = - l ßn  [1 + Y(f,A)] df (D-6a) 

and 

ÜO 

v{ii2) - 4T71 illif\)df (D-6b) 

Substituting q = 1/2 and (D-6) into (D-la) and simplifying yields the 

expression for P (T, T+A) given in (3-30), namely 

where 

Pe(x, T+A) = Pe(A) (D-7a) 

PJA) = exp(a(A) + b(&)) Q(V2bTU), (D-7b) 

and where 

a(A) = - if  In (1 + Y(f,A)) df , 

0 

(D-7c) 

b(A) = if  Y(f,A)/(l + y(f,A)) df , (D-7d) 

and 

Gss(f)
2 sin2irfA 

Y(f'A) = LG_ (f) + Gnn (f)J Gee(f) + Gn.n (f) Gnn (f) 
(D-7e) 

nlnl n2n2    ss nlnl    n2n2 
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Now to obtain the bound for PgU) given in (3-31), let y = y(f.A) and 

note that 0 <  Y/(1+Y) £ 1. Also, note that 

oo 

ln(l*Y) = -in (l -JSJ) -£± (-j^" (D-8a) 
n=l 

thus, 
oo 

o< ln(i+Y)_Ti_= £l (^jn (D.8b) 

= i (FT)    Z^ H^ (TM x     n=0    v ' 

= 71^7' i V2     * (D-8c) 

From (D-8b) it is easily seen that 

0 > aU) + b(A) 
oo 

.-T/[l„(l*T(f.1))-rliI^Ir]df 

oo 

> -V Y2(f, A) df . (D-9) 
^ 0 
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Also, since Y/(1+Y) < Y', 

0 < b(A) < T f  Y(f,A) df 

0 

(D-10) 

Substituting (D-9) and (D-10) into (D-7b), immediately yields (3-31), 

Pe(A) > exp 

oo -j       —       00 

4-/ Y2(f,A) df • Q [2TJ   T(f,&) df)
1/2 

^ 0 V  0        / 
(D-ll) 
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APPENDIX E 

APPROXIMATION FOR THE THRESHOLD SNR 

The approximations leading to the expression for the threshold SNR of 

(4-2) are given in this appendix. The initial assumption is that the 

threshold SNR can be closely approximated by the SNR which satisfies the 

condition 

2    9 2 
°ZZLB " ^°CRLB (E-l) 

From (3-61) 

7ZLB " TT [(nz)
2 - 1] Q(nz) --^e-

(nz) /2 *i 

*  2Pe D-/3 (E-2a) 

where 

nz = 2BT N/1 ♦ SNR' - 1 

N/1 + SNR' 

1/2 
(E-2b) 

and 

Pe = exp -BT ~2 in (l+ SSS3E^- VFTW -1 1 Q(nz).   ■ (E-2c) 
V    C ' N/1 + SNR'  J 

For large BT, the threshold SNR is small, then assume that SNR' << 1. This 

assumption allows the following approximations to be made, 
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1 + >/l + SNR'       1 + N/1 + SNR' 
 2 ' " 2  

1 + VI + SNR 

1 + N/1 + SNR' 

= 1 + 
SNR1 

- 1 + 

2(1 + N/1 + SNR') 

SNR' 
(E-3a) 

and similarly, 

N/1 + SNR'  - 1      N/1 + SNR'  - 1 N/1 + SNR'   +1 

\/l + SNR' N/1 + SNR' 

SNR' 

_N/1 + SNR1   + 1 _ 

— 

1 + SNR' + «yr 

SNR' 

+ SNR' 

7 
Substituting  (E-3a)  and  (E-3b)  into  (E-2a)  and  (E-2b) yields 

(E-3b) 

nz = N/BTSNR' 

and 

Note that ln(l + x) = x for small  x, thus 

(E-4a) 

Pe = exp i-BT [2 ln(l + SNR'/4)  - SNR'/2]i Q(N/BT SNR'). (E-4b) 

Pp = Q(N/BT SNR'). (E-5) 

Further suppose that BT SNR1 is large enough so that 

e-(nzr/2 = e-(BT SNR')/2 = Q (E-6) 
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Substitution of (E-4)-(E-6) into (E-2a) yields 

277, R = ^7 C(BT SNR' - 1) QNBT SNR') + i] ; ZZLB " 77 
2n 

+ 2 Q(VBT SNR') D^/3 

Recall from (3-63) and (3-64) that 

2     1 
aCRLB " TT 4n 

where 

(E-7) 

(E-8a) 

n2 = 2TT
2
 SNR' B3T/3 

Substituting (E-7) and (E-8a) into (E-l) and simplifying yields 

i (BT SNR' - 1) Q( slBT  SNR') + 4Q( ^BT SNR') D2 n
2/3 = | 

and substituting for n from (E-8b) gives 

BT SNR' QWBT SNR') [1 - 1/(BT - SNR') + 8TT
2
B
2
D
2
/9] =* i 

In the derivation of the ZZLB it was assumed that D >> 1/2B, thus, 

BD >> 1 and (E-9) becomes 

(E-8b) 

(E-9a) 

' (E-9b) 

BT SNR' Q(\/BT SNR') =  JrrT 
16 * ßV 

0 

Finally solving (E-10) for SNR' yields the approximate expression for 

SNR'th of (4-2), 

(E-10) 

SNR1 -1 
th 

N/BT 
(4, B3

DJ (E-lla) 
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where 

F(x) = x2 Q(x), (E-llb) 

and F+
i(«) denotes the larger of the two solutions of the inverse of F(°)« 

124 



APPENDIX F 

THE ML ESTIMATOR - TIME VARYING TIME DELAY 

This appendix briefly summarizes the derivation given by Knapp and 

Carter in [46] for the ML estimator for the time-varying TDE problem of 

(5-1). The procedure is very similar to that used to derive the ML 

estimator for the case of a fixed time delay as discussed in Appendix A, 

and similar notation is used here. The ML estimate for the parameters 

Bi, $2  and D is obtained by maximizing the conditional pdf p(_R | b-,, bo, T ), 

where b,, b2, and x represent hypothesized values for Si, ß?» and 

D, respectively. The conditional pdf can again be expressed as 

p(R | bp b2,x ) = c exp(- £ J) (F-2a) 

where 

= Zl    R*'(k) E 
k=-N 

-1 

k|b,x —x ' (F-2b) 

and 

c = TT  (2r E 
k=-N 

'klb.x 
1/2 -1 (F-2c) 

However, for the signal of (5-1) 

£k|b,x "  E [^(k) ^*'(k) bp b2,x ] 
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1   /kwo\    /kwo\ 
max(b,, b?) ss\ b 

max(b,, b_) ss 

o \ -jkw bi 

(kwo\ ejkwobx  o2   /kwo\ (bkwQ) 

= yQ (kw0) , (F-3) 

where b = b~ /b,. 

In practice, the power spectral matrix Q  must be estimated from the 

data. Since b^, bo = 1, Q may be replaced by 

Q(f) = Q(f) = 

rlrl 
(f) 

6- . (0 rlr3 

Gr r (f) rlr3 

r3r3 
f) 

(F-4a) 

where 

r3(t) S r2(t/b)/ b (F-4b) 

and hence 

<L « (f) ■ rlr3 b,b 1"2 
<4) =-j2*fbt 

(F-4c) 

That is, ro(t) represents a time scaled version of ^(t) where the time 

scaling compensates for the relative time compression between r^(t) and 

ro(t)„ Then, the quantity c in (F-2) is independent of T and is 

126 



approximately independent of b^ and bp (since bi, bo = 1), so that 

maximizing p(R | b,, b?,   T) is equivalent to minimizing J in (F-2b). 

For large T, 

CO 

-kh- *'(f) Q(f)-1 R(f) df. (F-3) 

By substituting for Q(f) l  and manipulating (F-3), it can be shown that 

minimizing J is equivalent to maximizing 

J'(b,t) = /\(f) R*(8f) W(f) ej2,rfbTdf , (F-4a) 

or equivalently, 

oo 

J"(b,x) = f Rx(f) Rjm W(f) e
j2irfbx df (F-4b) 

where 

W(f) = 

Cr r <f) rlr3 

Gr  (f)  (1 -C   (f)) 
rlr3 rlr3 

(F-4c; 

As noted in Chapter 5, the ML estimates of ß = ßo/ßi and D correspond 

to the values of b and T for which J' (or J") is a maximum. 
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APPENDIX G 

SIMULATION DETAILS - TIME-VARYING TIME DELAY 

A computer simulation routine implementing the compensation technique 

described in section 5.3 has been written and preliminary simulation results 

have been obtained as discussed in section 5.4. The signal and noise 

sequences were generated in the same manner as described in Appendix B. 

However, in this case, a time shifted version of the signal sequence was 

generated using the technique proposed by Youn [14, 56]. Program listings 

for the simulation main routine, DOPPLER, and the subroutine SHIFT, which 

generates the time shifted signal are included in this appendix. The 

portions of the main routine which specifically relate to the compensation 

technique have been boxed. Otherwise the processing is essentially 

identical to that for the case of a fixed time delay. The functions and 

subroutines called by the main routine are given in the header of the 

program listing, however, the subroutine listings (other than SHIFT) have 

not been included. Variables are also documented in the listings. However, 

it is worth noting that a maximum value on the delay value (MAXDEL) is set 

in the program. When the time delay exceeds this value in absolute value, 

the sign of time delay rate is changed (D RATE=-D RATE). 

128 



Q*#***********************************************************##*#****#* 

c 
C      DOPPLER COMPENSATION SIMULATION ROUTINE 
C 
C 
C: 
C 
C 
C 
C 
c 
c 
c***************#******************************************************* 
c 

PURPOSE 

VAX-11 FORTRAN SOURCE FILENAME: 

DEPARTMENT OF ELECTRICAL ENGINEERING 

REVISION      DATE 

01 „0 JULY 1983 

DOPPLER.FOR 

KANSAS STATE UNIVERSITY 

PROGRAMMER(S) 

KENT SCARBROUGH 

C 
C 
c 
c 
c 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c*********************************************************************** 
c*********************************************************************** 
c 

This routine implements a simulation to test 
a frequency domain technique to compensate for 
the "doppler" shift which occurs due to relative 
motion between source and sensors in the time 
delay estimation problem. 

ROUTINE(S) CALLED BY THIS ROUTINE 

BUTTER, FFTCX, FORD2, GCC, GWNSEO, HAMMING, HEADER, 
PEAK, SGOPEN, SGTRAN, REPLY, RSEED, RVINIT, SHIFT, 
SSEED, WAML, WMSC, WOPT, WPHT, WSCC, WSCT 

OTHER ROUTINE(S) ACCESSED BY THIS ROUTINE 

FFS, FFT842, LPDES, HPDES, BPDES, BSDES, COEFF, GAUSS 

REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
REAL 
INTEGER 
INTEGER 
INTEGER 
INTEGER 
LOGICAL 
LOGICAL 

R1 (32*1024), R2(32*1024), SGI(32*1024+61 ), SG2(32*1024) 
R1W(75), R2W(75), SG1W(75), SG2W(75), PAST(75) 
W0RKX(2050), W0RKY(2050) 
RXX(2048), RYY(2048), WlND0W(1024), WEIGHT(1025) . 
GXXM025), GYYM025), GXYRU025), GXYK1025) 
GXYRSV(1025,21), GXYISV(1025,21) 
TDELAY(500), TDRATE(500) 
SCCTAU( 
MSCTAU( 
SCCTDT( 
MSCTDT( 

500); 
500), 
500), 
500) 

SCTTAU( 
OPTTAU( 
SCTTDT( 
OPTTDT( 

500) 
500) 
500) 
500) 

AMLTAU( 
PHTTAU( 
AMLTDT( 
PHTTDT( 

500) 
500) 
500) 
500) 

SCCPK, SCTPK, AMLPK, MSCPK, OPTPK, PHTPK 
DELDOT, DEL_F, DEL_T, D_RATE, DM IN, FNORM, FS 
NSFRQL, NSFRQU, SGFRQL, SGFROU, PKVAL, SCALE 
SNR1, SNR2, SSTP, TIME, TDEL1 
ADELAY, MAXDEL, FSECT, NSECT, IPNT, LPNT 
PKLOC, NCMP, NTRL, NPTS, NPTP1, NPTM2, NPTD2 
NFFT, NSEG, NSIN, TSEG, TPTS, WIDTH, UNITP 
NSEED, SEED(38) 
SCC, SCOT, AML, MSC, OPT, PHAT, RDSEED, SVSEED 
FILTER, RESET, NOSET 
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CHARACTER FTYPE*2, SNRDB*3, SNRTMP*2, FCTN*40, TNAM*40 

Q*********************************************************************** 

c 
c 
c 

INITIALIZATION 

DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

TDEL1 
D_RATE 
FSECT 
NCMP 

/     0/, MAXDEL / 
/ 2.5E-4/, FS    / 
/ 2/, NSFRQL / 
/ 2/, NTRL  / 

SGFRQL / 0.0/, SGFRQU / 
SNR2  / -4.0/, SSTP  / 
NWT   / 51/, WIDTH / 

15/, DELDOT / 
2048./, FTYPE / 

0.0/, NSFRQU / 
51/, 

100./, 
-3.0/, 
256/ 

NPTS 
SNR1 
TIME 

/ 
/ 
/ 

.5E-4/ 
'LP'/ 
100./ 
512/ 

-3.0/ 
4.0/ 

DATA SCC /   .TRUE./, SCOT /   .TRUE./, AML /.FALSE./ 
DATA MSC        /.FALSE./, OPT /.FALSE./, PHAT /.FALSE./ 

C 
DATA FILTER / .TRUE./, RESET / .TRUE./, NOSET /.FALSE./ 
DATA RDSEED /.FALSE./, SVSEED /.FALSE./, NSEED /    38/ 

C 
C***#*********************************************** 
c 
C FORMAT  STATEMENTS 
C 

1 FORMAT(A) 
3 F0RMAT(A,110,A) 
4 FORMAT(A,F10.2,A) 
5 F0RMAT(A,8X,A) 
7 F0RMATU2.2) 

C 
C************************************************************* 
C 
C      CALCULATE CONSTANTS - INITIALIZE PROGRAM VARIABLES 
C 

FNYQ = FS / 2. 
NFTP1 « NPTS + 1 
NPTM2 = NPTS * 2 
NPTD2 = NPTS / 2 
NFFT = NPTM2 
TPTS = IFIXCTIME * FS) 
NSEG = TPTS / NPTS 
TSEG = 2 * NSEG - 1 

C 
DEL_F  = FNYQ /  FLOAT(NPTS) 
DEL_T =  TIME  /  FLOAT(TSEG) 
TWOPI   =  2.0  * 3.141593 
NCMP21   = NCMP * 2 +  1 
NWT2 =  (NWT -  1 )   /  2 

IPNT =  NPTS  - WIDTH/2 +  1 
LPNT ■  NPTS  + WIDTH/2 
DM IN =  FLOATUPNT -  NPTS) 

IF  ((FTYPE.EQ.'LP').OR.(FTYPE.EQ.'HP«)) 
NSECT = 2*FSECT 

ELSE IF (FTYPE.EQ.'BP1)  THEN 

THEN 
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c 
c 
c 

c 
c 
c 

c 
c* 
c 
c 
c 

FSECT = FSECT / 2 
NSECT *  4*FSECT 

ELSE 
FILTER = .FALSE. 

END IF 
NSAV = 75 

IF ((NSFRQU.EQ.SGFRQU).AND.(NSFRQL.EQ.SGFRQU)  RESET = .FALSE. 

COMPUTE HAMMING WINDOW 

CALL HAMM ING(WINDOW,NPTS,WPOWER) 
FNORM = TSEG * NPTS * WPOWER 

INITALIZE RANDOM NUMBER GENERATOR 

IF (RDSEED) THEN 
CALL SGOPEN(98,'READ»,•NOPROMPT•,■SEED.GCC','INTEGER',NSEED) 
CALL SGTRAN(98,'READ',>INTEGER'»SEED,NSEED) 
CALL RSEED(SEED(1),SEED(7)) 

END IF 

UNITP = 99 

ECHO CHECK OF PARAMETERS 

CALL HEADER(UNITP,'*** MOVING SOURCE SIMULATION ***•) 

WRITE(UNITP,3) Number of Trials 9 NTRL 
WRITE(UNITP,4) Sampling Frequency t FS  , Hz    » 
WRITE(UNITP,4) Observation Time 9 TIME , seconds' 
WRITE(UNITP,3) Segment Length 9 NPTS , points " 
WRITE(UNITP,3) FFT Size 9 NFFT , po i nts ' 
WRITE(UN IIP,3) Correlation Window 9 WIDTH, points ' 

WRITE(UNITP,*) 
WRITE(UNITP,5) FiIter Type 9 FTYPE 
WRITE(UNITP,3) FiItep Order 9 NSECT 
WRITE(UNITP,4) Lower Cutoff (noise) 9 NSFROL 1 Hz' 
WRITE(UNITP,4) Upper Cutoff (noise) 9 NSFRQU , » Hz' 
WRITE(UNITP,4) Lower Cutoff (signal) 9 SGFRQL , ' Hz» 
WRITE(UNITP,4) Upper Cutoff (signal) 9 SGFRQU ' Hz' 
WRITE(UNITP,4) First SNR Value(dB) 9 SNR1 • dB' 
WRITE(UNITP,4) Last SNR Value(dB) 9 SNR2 ' dB' 
WRITE(UNITP,4) SNR Stepsize(dB) 9 SSTP ' dB' 

TEMPI = D_RATE * 1.0E4 
TEMP2 = DELDOT * 1.0E4 
WRITE(UNITP,*) 
WRITE(UNITP,3) Number of Comp. 9 NCMP 
WRITE(UNITP,4) Initial Delay Value 9 TDEL1 
WRITE(UNITP,3) Maximum Delay Value 9 MAXDEL 
WRITE(UNITP,4) Initial Delay Rate 9 TEMPI, E-4' 
WRITE(UNITP,4) Assumed Rate Stepsize 9 TEMP2, E-4' 
WRITE(UNITP,3) No. of FiIter Coeffs 9 NWT 
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WRITEtUNITP,*) 
IF (RDSEED) WRITEtUNITP,*) 

&   'Initial Seed Values Read From File: SEED.GCC 
IF (SVSEED) WRITEtUNITP,*) 

&   'Final Seed Values Output To File: SEED.GCC 
C 

WRITE(UNITP,*) 
C 
C********#******#****#*****************************#******************** 
C*#********************************************************************* 

C 
C MAIN LOOP :  EXECUTED ONCE FOR EACH SNR VALUE 
C 

DO SNR = SNR1, SNR2, SSTP 
C 

ASNR = 10.**(SNR/10.) 
SCALE = 1. / SQRT(ASNR) 

C 
ISNR = IFIX(SNR) 
ITMP = ABS(ISNR) 
WRITE(SNRTMP,7) ITMP 
IF (ISNR.LT.O) THEN 

SNRDB = 'N' // SNRTMP 
ELSE 

SNRDB = '0' // SNRTMP 
END IF 

C 
0****************#***************************#*****#********** 
Q***#***************************************#***************** 

C 
C SECONDARY LOOP :  EXECUTED ONCE FOR EACH TRIAL 
C 

DO ITRIAL = 1, NTRL 
C 
C 
0*#*#****#**********#************##***************** 
Q**#*#**********#*****#**************#***#*********# 

C 
C      GENERATE RECEIVED S IGNAL" SEQUENCES 
C 
C GENERATE WHITE,GAUSS I AN NOISE SEQUENCES 
C 

CALL GWNSEQ(R1,TPTS,0.0,1.0) 
CALL GWNSEQ(R2,TPTS,0.0,1.0) 
IF (ITRIAL.EQ.1) 

& CALL GWNSEQ(PAST,NWT2,0.0,1.0) 
CALL GWNSEQ(SG1,TPTS,0.0,1.0) 

C 

c 
C FILTER SEQUENCES TO OBTAIN DESIRED SPECTRA 
C 
C 

IF (FILTER) THEN 
CALL BUTTER(R1,TPTS,R1W,NSFRQL,NSFRQU,FS, 

& FTYPE,FSECT,RESET) 
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CALL BUTTER(R2,TPTS,R2W,NSFRQL,NSFRQU,FS, 
& FTYPE,FSECT,NOSET) 

IF (ITRIAL.EQ.1) THEN 
CALL BUTTER(PAST,NWT2,SG1 W,SGFRQL,SGFRQU,FS, 

&, FTYPE,FSECT, RESET) 
CALL BUTTER(SGI,TPTS,SG1W,SGFRQL,SGFRQU,FS, 

& FTYPE,FSECT,NOSET) 
ELSE 

CALL BUTTER(SG1,TPTS,SG1W,SGFRQL,SGFRQU,FS, 
& FTYPE,FSECT,RESET) 

END IF 
END IF 

C**********#****#**********************#************ 
C 
C SHIFT SIGNAL SEQUENCE, APPEND PAST VALUES 
C AND SAVE 'NEW PAST VLUES 
C 

DO I FT - TPTS, 1, -1 
JPT = IPT + NWT2 
SG1(JPT) = SGI(IPT) 

END DO 
C 

DO IPT = 1, NWT2 
JPT = TPTS + IPT 
SGI(IPT) = PAST(IPT) 
PAST(IPT) = SGI(JPT) 

END DO 
■tr ■ ——- 
Q************#**#**#****#**************#****#**#**** 

& 
C GENERATE TIME SHIFTED VERSION OF SIGNAL SEQUENCE 
C 

TDELAY(ITRIAL)   = TDEL1 
TDRATE(ITRIAL)   = D_RATE 

C 
CALL  SHIFT(SG1,SG2,TPTS,NWT,D_RATE,TDEL1) 

C 
IF  (ABS(TDELI)   .GT.   FLOAT(MAXDEL))     D_RATE  =  -D_RATE 

_6 — 

C 
C SCALE NOISE SEQ TO OBTAIN DESIRED SNR, 
C ADD SIGNAL TO NOISE SEQUENCES 
C 
C 

DO IPT = 1, TPTS 
RKIPT)   = SCALE * RKIPT)  + SGI (IPT) 
R2(IPT)   =  SCALE * R2(IPT)  + SG2UPT) 

END DO 
C 
Q*****#***#*********#****#***#**#******************* 
Q*****************************#****#**************** 

C 
C      IMPLEMENT GCC PROCESSOR 
C 
C ZERO SUMMING ARRAYS & WORK ARRAYS 
C 
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. 

CALL RVINIT(GXX,NPTP1,0.0) 
CALL RVINIT(GYY,NPTP1,0.0) 
CALL RVINIT(GXYR,NPTP1,0.0) 
CALL RVINIT(GXYI,NPTP1,0.0) 
CALL RVINIT(GXYRSV,1025 * 21,0.0) 
CALL RVINIT(GXYISV,1025 * 21,0.0) 
CALL RVINIT(W0RKX,NPTM2+2,0.0) 
CALL RVINIT(WORKY,NPTM2+2,0.0) 

SCCPK = 0.0 
SCTPK = 0.0 
AMLPK = 0.0 
MSCPK = 0.0 
OPTPK = 0.0 
PHTPK = 0.0 

Q#************************************************** 
C 
C LOOP EXECUTED ONCE FOR EACH DATA SEGMENT 
C 

DO ISEG = 1, TSEG 
C 
Q#************************************************** 
c 

WEIGHT DATA ARRAYS WITH HAMMING WINDOW 
AND PAD WITH ZEROES (DOUBLE LENGTH) 

C 
C 
c 

NPTD2 + IPT 
* WINDOW(IPT) 
* WINDOWSIPT) 

DO IPT = 1, NPTS 
IND1 = (ISEG - 1) * 
RXX(IPT) = RKIND1) 
RYY(IPT) = R2MND1) 
IND2 = NPTS + IPT 
RXXUND2) = 0.0 
RYYUND2) = 0.0 

END DO 
C 
C*************************************************** 

c 
c 
c 
c 

COMPUTE FORWARD FFT AND AVERAGE THE 
PERIODOGRAM AUTO-SPECTRAL ESTIMATES 

CALL FFTCX(RXX,RYY,NFFT,'FORWARD','NONORM») 
CALL F0RD2(RXX,RYY,NFFT,WORKX,WORKY) 

GXX(1) = GXX(l) + RXX(I) * 
GYY(1) = GYYd) + RYYd) * 
GXYRd) = GXYRd) + RXXd) 
DO IPT = 2, NPTS 

JPT = 2 * (IPT-1) 
JP1 = JPT + 1 
GXX(IPT) = GXX(IPT) 
GYY(IPT) = GYY(IPT) 
GXYRdPT) = RXX(JPT) 

RXXd) 
RYYd) 
* RYYd) 

& 
GXYKIPT) 

END DO 
GXX(NPTPI) 

+ RXX(JPT)**2 +  RXX(JP1)**2 
+ RYY(JPT)**2 + RYY(JP1)**2 
* RYY(JPT) 

+ RXX(JPI)   *  RYY(JP1) 
RXX (JPT)   * RYYUP1) 

- RXX(JP1)   *  RYY(JPT) 

GXX(NPTPI)  + RXX(NPTM2)  *  RXX(NPTM2) 
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GYY(NPTPI) = GYY(NPTPI) + RYY(NPTM2) * RYY(NPTM2) 
GXYR(NPTPI) = GXYR(NPTPI) + RXX(MPTM2) * RYYCNPTM2) 

r-G  
c******** ******************************************* 

c COMPENSATE FOR TIME SHIFT BETWEEN DATA SEGMENTS 

c 
c 

& AVERAGE COMPENSATED CROSS-SPECTRAL ESTIMATES 

DO JCMP = 1, NCMP21 
ICMP = JCMP - (NCMP + 1) 
TAUDOT = FLOAT(ICMP) * DELDOT 
RSEG = FLOAT(ISEG) - .5 
ARGTMP = TWOPI* RSEG * DEL_T * TAUDOT 
GXYRSV(1,JCMP) = GXYRSV(1,JCMP) + GXYR(I) 
GXYISVd, JCMP) = 0.0 
DO IPT = 2, NPTS 

FREO = FLOATdPT - 1) * DEL_F 
ARG = FREO * ARGTMP 
JPT = 2 * (IPT-1) 
JP1 = JPT + 1 
GXYRSVCIPT,JCMP) = GXYRSVCIPT,JCMP) + 

& GXYR(IPT) * COS(ARG) - GXYKIPT) * SIN(ARG) 
GXYISV(IPT,JCMP) = GXYISV(IPT,JCMP) + 

& GXYR(IPT) * SIN(ARG) + GXYKIPT) * COS(ARG) 
END DO 
ARG = FNYQ * ARGTMP 
GXYRSV(NPTP1,JCMP) = GXYRSV(NPTP1,JCMP) + 

& GXYR(NPTP1) * COS(ARG) 
GXYISV(NPTP1,JCMP) = 0.0                     j 

END DO 
-G— 

Q*************************************************** 

C 
C GO BACK FOR NEXT DATA SEGMENT 
C 

END DO 
C 
Q*************************************************** 

Q*************************************************** 

C 
C LOOP EXECUTED ONCE FOR EACH COMPENSATION VALUE 
C 
C 

DO JCMP = 1, NCMP21 
ICMP = JCMP - (NCMP + 1 ) 
TAUDOT = FLOAT(ICMP) * DELDOT 

C 
DO IPT = 1, NPTP1 

GXYR(IPT)  = GXYRSV(IPT,JCMP) 
GXYKIPT)   = GXYISV(IPT,JCMP) 

END DO 
-C ——_ ; ,  
Q*************************************************** 

C 
C      NORMALIZE SPECTRAL ESTIMATES TO ACCOUNT FOR: 
C 1) POWER REDUCTI ON DUE TO WINDOWING 
C 2) SUMMING TSEG ESTIMATES 
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C 3) NUMBER OF POI NTS/SEGMENT 
C      NOTE:  NO NORMALIZATION IS DONE IN FFT'S 
C 

(JCMP .EQ. 1) THEN 
DO IPT = 1, NPTP1 

GXX(IPT) = GXX(IPT) / FNORM 
GYY(IPT) = GYY(IPT) / FNORM 

END DO 
IF 

IPT * 1, NPTP1 
GXYR(IPT) = GXYR(IPT) / FNORM 
GXYI(IPT) = GXYI(IPT) / FNORM 

END 

DO 

END DO 
C 
C********************#********#******#****#***#***#* 

c 
C COMPUTE GCC FUNCTIONS FOR EACH COMPENSATION VALUE 
C DETERMINE GLOBAL PEAK IN TAU-TAUDOT COORDINATES 
C 
c 

IF (SCO THEN 
CALL RVINIT(WEIGHT,NFTP1,1.0) 
CALL GCC(WORKX,WORKY,NFFT,WEIGHT,GXYR,GXYI) 
CALL PEAK(WORKX,IPNT,LPNT,PKVAL,PKLOC) 
IF (SCCPK .LT. PKVAL)  THEN 

SCCPK = PKVAL 
IND = PKLOC - IPNT + 1 
SCCTAU(ITRIAL) = FLOATOND - WIDTH/2) 
SCCTDT(ITRIAL) = TAUDOT 

END IF 
END IF 

IF (SCOT) THEN 
CALL WSCT(WEIGHT,NPTP1,GXX,GYY) 
CALL GCC(WORKX,WORKY,NFFT,WEIGHT,GXYR,GXYI) 
CALL PEAK(WORKX,IPNT,LPNT,PKVAL,PKLOC) 
IF (SCTPK .LT. PKVAL) THEN 

SCTPK = PKVAL 
IND— PKLOC - IPNT + 1 
SCTTAU(ITRIAL) * FLOAT«IND - WIDTH/2) 
SCTTDT(ITRIAL) = TAUDOT 

END IF 
END IF 

IF (AMD THEN 
CALL WAML(WEIGHT,NPTP1,GXYR,GXYI,GXX,GYY) 
CALL GCC(WORKX,WORKY,NFFT,WEIGHT,GXYR,GXYI) 
CALL PEAK(WORKX,IPNT,LPNT,PKVAL,PKLOC) 
IF (AMLPK .LT. PKVAL) THEN 

AMLPK = PKVAL 
IND = PKLOC - IPNT + 1 
AMLTAU(ITRIAL) = FLOATdND - WIDTH/2) 
AMLTDT(ITRIAL) = TAUDOT 

END IF 
END IF 
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IF  (MSC)  THEN 
CALL  WMSC(WEIGHT,NPTP1,GXYR,GXYI,GXX,GYY) 
CALL  GCC(WORKX,WORKY,NFFT,WEIGHT,GXYR,GXYI) 
CALL   PEAKCWORKX,IPNT,LPNT,PKVAL,PKLOC) 
IF   (MSCPK   .LT.   PKVAL)     THEN 

MSCPK = PKVAL 
IND = PKLOC -   IPNT +  1 
MSCTAU(ITRIAL)   =  FLOATdND - WIDTH/2) 
MSCTDT(ITRIAL)   = TAUDOT 

END   IF 
END   IF 

C 
IF   (OPT)  THEN 

CALL  WOPT(WEIGHT,NPTP1,FRQL,FRQU,FS,FTYPE,NSECT) 
CALL  GCC(WORKX,WORKY,NFFT,WEIGHT,GXYR,GXYI) 
CALL  PEAKCWORKX,IPNT,LPNT,PKVAL,PKLOC) 
IF   (OPTPK   .LT.   PKVAL)     THEN 

OPTPK  =  PKVAL 
IND = PKLOC -   IPNT +  1 
OPTTAU(ITRIAL)   =  FLOATdND - WIDTH/2) 
OPTTDTCITRIAL)   = TAUDOT 

END   IF 
END   IF 

C 
IF   (PHAT)   THEN 

CALL WPHT(WEIGHT,NPTP1,GXYR,GXYI) 
CALL GCC(WORKX,WORKY,NFFT,WEIGHT,GXYR,GXYI) 
CALL PEAKCWORKX,IPNT,LPNT,PKVAL,PKLOC) 
IF (PHTPK .LT. PKVAL) THEN 

PHTPK = PKVAL 
IND = PKLOC - IPNT + 1 
PHTTAU(ITRIAL) = FLOATdND - WIDTH/2) 
PHTTDT(ITRI AL) = TAUDOT 

END IF 
END IF 

C 
IF (OUTPUT)  CLOSEU) 

C 
Q*************************************************** 

C -. ... 

C      GO BACK FOR NEXT DOPPLER COMPENSATION 
C 

END DO 
C 
C******************#**********#**#***#************** 
c*************************************************** 
c 
C      GO BACK FOR NEXT TRIAL 
C 
C 

END DO 
C 
Q************************************************************* 

Q************************************************************* 

C 
C      OUTPUT ESTIMATES OF TAU & TAUDOT 
C 
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IF (SCO THEN 
TNAM = 'SCCTAU."// SNRDB 
CALL SGOPENC1,•WRITE','NOPROMPT•,TNAM,'REAL',NTRL) 
CALL SGTRAN(1,'WRITE',■REAL',SCCTAU,NTRL) 
TNAM = 'SCCTDT.' // SNRDB 
CALL SGOPEN(1,»WRITE','NOPROMPT',TNAM,'REAL•,NTRL) 
CALL SGTRAN(1f»WRITE■,•REAL•,SCCTDT,NTRL) 

END IF 

IF (SCOT) THEN 
TNAM = 'SCTTAU.' // SNRDB 
CALL SGOPEN(1,•WRITE',■NOPROMPT»,TNAM,'REAL•,NTRL) 
CALL SGTRAN(1,'WRITE',■REAL•,SCTTAU,NTRL) 
TNAM = »SCTTDT.' // SNRDB 
CALL SGOPEN(1,'WRITE',■NOPROMPT',TNAM,»REAL',NTRL) 
CALL SGTRAN(1,'WRITE','REAL',SCTTDT,NTRL) 

END IF 

IF (AMD THEN 
TNAM = 'AMLTAU.' // SNRDB 
CALL SGOPEN(1,'WRITE',■NOPROMPT',TNAM,'REAL•,NTRL) 
CALL SGTRAN(1,'WRITE»,'REAL',AMLTAU,NTRL) 
TNAM = 'AMLTDT.' // SNRDB 
CALL SGOPEN(1,'WRITE•,■NOPROMPT',TNAM,'REAL *,NTRL) 
CALL SGTRAN(1,■WRITE','REAL',AMLTDT,NTRL) 

END IF 

IF (MSC) THEN 
TNAM = 'MSCTAU.' // SNRDB 
CALL SGOPEN(1,•WRITE','NOPROMPT',TNAM,»REAL',NTRL) 
CALL SGTRAN(1,'WRITE',»REAL•,MSCTAU,NTRL) 
TNAM = »MSCTDT.» // SNRDB 
CALL SGOPENC1,«WRITE»,'NOPROMPT',TNAM,•REAL»,NTRL) 
CALL SGTRAN(1,'WRITE■,'REAL *,MSCTDT,NTRL) 

END IF 

IF (OPT) THEN 
TNAM = 'OPTTAU.' // SNRDB 
CALL SGOPEN(1,'WRITE','NOPROMPT■,TNAM,•REAL',NTRL) 
CALL SGTRAN(1,■WRITE•,■REAL *,OPTTAU,NTRL) 
TNAM = 'OPTTDT.» // SNRDB 
CALL SGOPEN(1,'WRITE•,»NOPROMPT',TNAM,'REAL',NTRL) 
CALL SGTRAN(1,'WRITE','REAL »,OPTTDT,NTRL) 

END IF 

IF (PHAT) THEN 
TNAM = 'PHTTAU.' // SNRDB 
CALL SGOPEN(1,»WRITE','NOPROMPT1,TNAM,'REAL',NTRL) 
CALL SGTRAN(1,»WRITE»,'REAL',PHTTAU,NTRL) 
TNAM = 'PHTTDT.' // SNRDB 
CALL SGOPEN(1,»WRITE',»NOPROMPT',TNAM,'REAL',NTRL) 
CALL SGTRAN(1,«WRITE»,»REAL•,PHTTDT,NTRL) 

END IF 

TNAM = 'TDELAY.' // SNRDB 
CALL SGOPEN(1,'WRITE•,•NOPROMPT',TNAM,>REAL•,NTRL) 
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CALL SGTRAN(1,»WRITE•,'REAL•,TDELAY,NTRL) 
TNAM = 'TDRATE.' // SNRDB 
CALL SGOPEN(1,'WRITE',•NOPROMPT•,TNAM,■REAL■,NTRL) 
CALL SGTRAN(1,'WRITE *,'REAL',TDRATE,NTRL) 
CLOSE*1) 

C 
Q*#****##****#****************#*****##************************ 

C 
C GO BACK FOR NEXT SNR 
C 

END DO 
C 
C*********************************************************************** 
Q************************************#****#*****#**********#************ 

C 
C SAVE SEED VALUES ON DISK IF DESIRED 
C 

IF (SVSEED) THEN 
CALL SSEED(SEED(1),SEED(7)) 
CALL SGOPEN(98,' WR I TE», •NOPROMPT■,•SEED.GCC',»INTEGER•,38) 
CALL SGTRAN(98,»WRITE»,»INTEGER',SEED,38) 

END IF 
C 

STOP 
END 
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Q*********************************************************************** 

C 
C TIME SHIFTED SEQUENCE GENERATOR 
C 
C VAX-11 FORTRAN SOURCE FILENAME:        SHI FT.FOR 
C 
C DEPARTMENT OF ELECTRICAL ENGINEERING   KANSAS STATE UNIVERSITY 
C 
C REVISION      DATE                 PROGRAMMER(S) 
C      —       — 
C 00.0          JULY, 1983            K SCARBROUGH 
C 
C**************************************************************** ******* 
c 
C      CALLING SEQUENCE 
C 
C CALL SHIFT(X1,X2,NPTS,NWT,DD0T,DELAY) 
C 
C      PURPOSE 
C 
C This routine generates a time shifted version of a 
C sequence. The time shift is linear with rate DDOT 
C for the length of the sequence. The delay rate 
C can be changed on subsequent calls to the routine, 
C however, the time delay is computed by this routine 
C and is continuous between calls. 
C 
C      EMBEDDED ROUTINE(S) CALLED BY THIS ROUTINE 
C 
C COEFF 
C 
C ARGUMENT(S)   REQUIRED  FROM THE  CALLING ROUTINE 
C 
C XI      Input sequence to be time-shifted 
C 
C NPTS - Number of points in input sequence 
C 
C NWT  - Number of coefficients for 'Shift-Filter» 
C (NWT is assumed to be odd, and cLE. 61) 
C 
C DDOT - Delay rate 
C 
C DELAY - Initial time delay 
C (used only on first call to subroutine) 
C 
C ARGUMENT(S)   SUPPLIED    TO    THE  CALLING ROUTINE 
C 
C X2   - Time-shifted version of X1 
C 
C DELAY - Value of time delay after NPTS 
C 
Q*********************************************************************** 

C 
SUBROUTINE SHIFT(X1,X2,NPTS,NWT,DD0T,DELAY) 

C 
REAL X1(*), X2(*), XTMP(61), WT(61), PAST(61) 
LOGICAL FIRST /.TRUE./ 
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SAVE FIRST, PAST, TDEL 
C 
0************************************************************* 
c 
C  INITIALIZE PARAMETERS 
C 

NWT2 = (NWT - 1 ) / 2 
IF (FIRST) THEN 

FIRST = .FALSE. 
TDEL = DELAY 
CALL RVINIT(PAST,NWT2,0.0) 

END IF 
C 

DO IPT = 1, NWT2 
JPT = IPT + NWT2 
XTMP(IPT) = PAST(IPT) 
XTMP(JPT) = XI(IPT) 

END DO 
C 
0************************************************************* 
C 
C GENERATE TIME SHIFTED SEQUENCE 
C 

DO IPT = 1, NPTS 
C 
C*************************************************** 
C 
C       CALCULATE »TIME-SHIFT' FILTER COEFFICIENTS 
C 

CALL COEFF(WT,NWT,TDEL) 
TDEL = TDEL + DDOT 

C 
C*************************************************** 
C 
C       IMPLEMENT 'TIME-SHIFT' FILTER 
C 

KPT = IPT + NWT2 
XTMP(NWT) = XKKPT) 
X2UPT) = 0.0 
DO IWT = 1, NWT 

X2UPT) = X2(IPT) + WT(IWT) * XTMP(IWT) 
END DO 

C 
0*************************************************** 
C 
C       SHIFT VALUES IN XTMP ARRAY 
C 

DO IWT = 1, NWT - 1 
XTMP(IWT) = XTMP(IWT + 1) 

END DO 
C 

END DO 
C 
0************************************************************* 
C 
C SAVE LAST 'NWT2' VALUES OF X1 ARRAY 
C 
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DO IPT = 1, NWT2 
JPT = IPT + NPTS - NWT2 
PAST(IPT) = XI(JPT) 

END DO 
C 
C*#*********************************************************** 

c 
C RETURN TIME-SHIFTED SEQUENCE AND 
C CURRENT DELAY VALUE TO MAIN ROUTINE 
C 

DELAY = TDEL 
C 

RETURN 
END 
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Q**************************************************************** ******* 

c 
C SUBROUTINE COEFF(WT,NWT,TDEL) 
C 
C     This routine computes the coefficients for a filter 
C     which generates a time shifted version of a given 
C     sampled sequence. 
C 
C     NOTE :  It is assumed that NWT will be odd. 
C 
Q*********************************************************************** 

C 
SUBROUTINE COEFF(WT,NWT,TDEL) 

C 
REAL WT(*) 

C 
PI   = 3.141593 
NWT2 =  (NWT -  1)   /  2 

C 
DO   IWT =  1,   NWT 

JWT =  NWT -   IWT 
ARG .=   (FLOATUWT - NWT2)   - TDEL)   *  PI 
IF   (ARG.NE.0.0)  THEN 

WT(IWT)   =  SIN(ARG)   /  ARG 
ELSE 

WT(IWT)   =  1.0 
END   IF 

END DO 
C 

RETURN 
END 
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